Regione Autonoma Friuli Venezia Giulia **COMUNE DI SAN GIORGIO DI NOGARO**

Piano Regolatore Generale Comunale VARIANTE N. 48

Studio di impatto sulla viabilità **RELAZIONE TECNICA**

Proponenti:

COM.IM Commerciale Immobiliare S.r.l. HERON AUTOMATION S.r.l.s.

Febbraio 2020

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

INDICE

01.	INTRODUZIONE	3
02.	LA VARIANTE AL PIANO	4
03.	STATO DI FATTO DELLA VIABILITÀ	4
03.01	Inquadramento a media scala	4
03.02	Inquadramento di dettaglio	6
03.02.01	Individuazione dei nodi di interesse	6
03.02.02	Analisi della domanda - Flussi rilevati	9
04.	SCENARI FUTURI DELLA VIABILITÀ1	1
04.01	Stima del potere attrattivo	11
04.02	Stima del traffico generato	4
04.03	Flussi additivi risultanti	6
05.	ANALISI DEL TRAFFICO	7
05.01	METODOLOGIA DI STUDIO DELLA CIRCOLAZIONE	7
05.01.01	STUDIO DELL'INTERSEZIONE A RASO NON SEMAFORIZZATA	8
05.02	Confronto before-after	21
06.	CONCLUSIONI	3
01.	APPENDICE 01 FOGLI DI CALCOLO HCM - SCENARIO STATO DI FATTO 2	6
02.	APPENDICE 02 FOGLI DI CALCOLO HCM - SCENARIO DI PROGETTO 3	7

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

01. **INTRODUZIONE**

La presente relazione riguarda l'impatto sul sistema della mobilità di una variante urbanistica al PRGC del Comune di San Giorgio di Nogaro.

Nello specifico la variante riguarda due aree urbanizzate poste nel quadrante nord del territorio comunale, per il quale si intende promuovere l'interscambio delle rispettive destinazioni d'uso al fine di avviare un'azione di recupero e di valorizzazione territoriale.

La prima area, per le finalità del seguente studio di seguito denominata "A", è stata sede un tempo di una società del settore dell'edilizia, ed è caratterizzata da due immobili, un capannone di dimensioni importanti (di seguito denominato "A2") e da un'edifico uso foresteria (di seguito denominato "A1"). Gli immobili ed il sito versano in condizioni di degrado e abbandono. L'accessibilità all'area avviene mediante due accessi, il primo dalla SR UD 80 (strada di rango principale), il secondo dalla Via Callata / Via Palmanova, di rango funzionale inferiore.

La seconda area, per le finalità del seguente studio di seguito denominata "B", è posta a nord dell'abitato di San Giorgio di Nogaro ed in prossimità dei confini amministrativi del comune di Porpetto. Questa ha uno sviluppo territoriale di 7.193 mg. Si presenta edificata ed urbanizzata con un'immobile di forma rettangolare attestato con il lato lungo parallelo alla SR UD 80, sede un tempo di un'azienda con annesso edificio a carattere residenziale legato all'attività principale. L'edificio residenziale è distinto sia fisicamente che funzionalmente da una recinzione che ne segna i confini degli spazi pertinenziali ed i limiti dell'assetto catastale. Edificio residenziale ed immobile (artigianale) hanno un unico accesso diretto lungo la SR UD 80.

Le società proprietarie delle due aree hanno chiesto una riclassificazione delle aree per avviare una riconversione degli usi, per l'area B, riconoscendo una vocazione artigianale (per l'edificio residenziale si prevede una diversa classificazione in zona B2). Per l'area A l'interscambio avviene mediante riclassificazione da zona D3 in zona H3 commerciale, finalizzando la riclassificazione alle manifestate esigenze della proprietà che intende promuovere un recupero a fini commerciali.

Il presente studio ha come finalità la valutazione dell'impatto di tale variazione sulla rete stradale circostante alle aree interessate. Le analisi sono state condotte basandosi sui procedimenti proposti dall'Highway Capacity Manual, il Manuale della Capacità della Strada, redatto e pubblicato dal Transportation Research Board del National Research Council, ossia l'Ente Federale USA paragonabile al nostro Consiglio Nazionale delle Ricerche.

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

02. LA VARIANTE AL PIANO

Come già anticipato la variante riguarda due aree per le quali si intende promuovere l'interscambio delle rispettive destinazioni d'uso al fine di avviare un'azione di recupero e di valorizzazione territoriale.

Tale variante è redatta ai sensi dell'art. 63 sexies della legge 5/2007 ed in particolare ricade nella casistica di cui al comma 1 lettera e "interscambio di destinazioni d'uso tra zone omogenee urbanizzate esistenti".

Nello specifico, le superfici interessati dalla variante sono di seguito descritte:

- Area A:
 - da Zona D3 soggetta a PRPC a Zona H3*: mq 11.177
 - da Zona D3 soggetta a PRPC a Zona E6: mg 218
 - da Zona E6 a Zona H3*: mg 2642
 - Da viabilità entro PRPC a zona B2: mg 628
- Area B:
 - da Zona H3 a Zona D3: mg 4.693
 - da Zona H3 a Zona B2: mg 2500

03. STATO DI FATTO DELLA VIABILITÀ

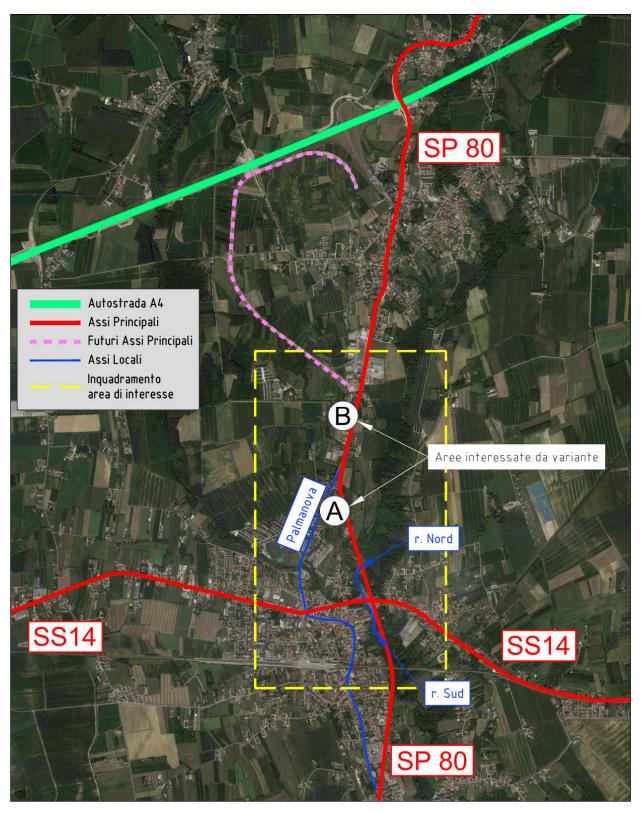
03.01 Inquadramento a media scala

Il sistema viabilistico che lega l'area di studio al territorio circostante ha come asse fondamentale la SR UD 80 (ex S.P. 80), che la connette a Nord con il casello autostradale di S. Giorgio di Nogaro e con gli abitati dell'area Palmanova - Porpetto, nonché con il casello autostradale di Palmanova. Nelle immediate vicinanze dell'area di studio la SR UD 80 si configura come traversa urbana dell'abitato di Porpetto: al fine di inquadrare tale tratta risulta di fondamentale importanza la realizzazione della variante al centro abitato (in rosa nella successiva planimetria di inquadramento), che connetterà il casello autostradale al tratto di SR UD 80 a sud di Porpetto, permettendo di sgravare il centro abitato di buona parte del traffico attualmente presente, con particolare riferimento al traffico pesante generato dalla connessione autostradale. Tale variante è in corso di realizzazione.

A sud dell'area di studio la viabilità principale è composta dalla stessa SR UD 80, che prosegue fino a connettere la Zona Industriale Aussa Corno (ZIAC), e dalla S.S. 14 lungo la direttrice est-ovest. Le due arterie si intersecano al limite ovest dell'abitato di Chiarisacco (frazione del Comune di S. Giorgio di Nogaro) con un'intersezione a livelli sfalsati.

Questa si compone di una rotatoria sulla S.S. 14, dalla quale di diramano due brevi tronchi stradali di connessione (raccordo nord e raccordo sud nella successiva planimetria di inquadramento) che terminano sulla SR UD 80 con due intersezioni a T.

Sulla viabilità fin qui descritta si connettono quindi tutti gli assi locali, fra i quali merita particolare considerazione via Palmanova in quanto soggetta agli accessi diretti dalle aree di studio.



Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

Inquadramento territoriale a media scala dell'area di studio

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

03.02 Inquadramento di dettaglio

Considerando la scala territoriale della variante, si ritiene che questa vada ad impattare principalmente sul tratto di SR UD 80 prospiciente e, in misura inferiore, sulla direttrice della viabilità locale via Palmanova / via Ippolito Nievo. Tale individuazione è verosimile alla luce delle sequenti considerazioni:

- ✓ La variante di Porpetto permette di trascurare la parte nord del territorio, in virtù del fatto che la sua realizzazione andrà a sgravare l'attuale viabilità (traversa urbana della SR UD 80 in abitato di Porpetto).
- Entrambe le aree (A e B) hanno accesso diretto alla SR UD 80, quindi il tronco stradale prospiciente risulterà il più sollecitato dai flussi additivi.
- Verso Sud, è plausibile considerare la SR UD 80 fino all'intersezione 2 con il raccordo Nord alla SS 14; da tale intersezione i flussi generati si disperdono lungo le direttrici locali che danno accesso alle aree abitative.
- Verso Sud-Est, in virtù delle stesse considerazioni, è plausibile considerare via Palmanova fino al semaforo con la SS 14 (intersezione 3).

Si ritiene quindi opportuno analizzare principalmente la condizione di flusso interrotto in corrispondenza dell'intersezione a raso non semaforizzata tra la SR UD 80 e via Palmanova

(int. in corrispondenza dell'intersezione raso semaforizzata tra la SR UD 80 ed il raccordo Nord con la ss14 (int. 2), nonché di effettuare delle valutazioni quanto meno qualitative sull'intersezione semaforizzata via Ippolito Nievo tra (prosecuzione via Palmanova) e la S.S. 14 (int. 3).

03.02.01 Individuazione dei nodi di interesse

I nodi di interesse sulla rete stradale sono evidenziati nel successivo inquadramento di dettaglio. Questi nodi dettaglio analizzati in studio, mentre per quanto riguarda il secondo accesso all'area A, su via Palmanova (v. foto), dalle ispezioni effettuate in sito nelle ore di punta si ritiene trascurabile l'analisi di dettaglio, in virtù del traffico estremamente esiguo che insiste sul tratto di strada principale allo stato attuale.

Inquadramento di dettaglio dei nodi di interesse

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

Accesso sul retro dell'area A

Uscita del vialetto di accesso dell'area A su via Callalta

Uscita di via Callalta su via Palmanova vista da via Palmanova

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

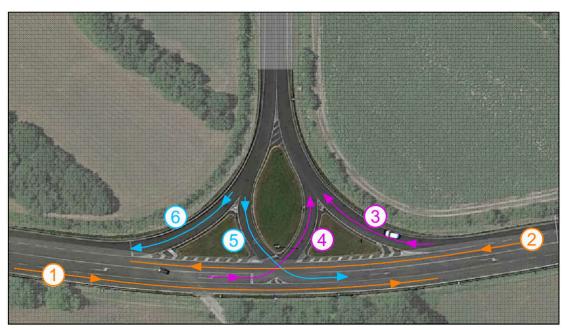
Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

Uscita di via Callalta su via Palmanova vista da via Palmanova vista da posizione a ridosso dell'intersezione 1

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

03.02.02 Analisi della domanda - Flussi rilevati


Al fine di valutare le prestazioni del sistema sono stati raccolti dati sull'esistente: in particolare per la raccolta di dati geometrici e di contesto le informazioni desumibili dalla Carta Tecnica Regionale sono stati integrati mediante rilievi ispettivi in sito.

Per quantificare la domanda di spostamenti attuale, sono stati rilevati i volumi di traffico sulla SR UD 80, di modo da poter ricostruire lo scenario completo dei movimenti su tale direttrice, nonché dei flussi scambiati con le strade locali.

I conteggi veicolari, nonché le visite ispettive generali sugli assi stradali in esame, sono state effettuati nelle giornate di venerdì 13 e sabato 14 dicembre 2019 (fascia oraria mattino e sera rispettivamente). A riguardo è opportuno far notare quanto meno due aspetti. In primis trattasi di giornate a ridosso delle festività natalizie (con conseguente aggravio per il traffico "da shopping" nella fascia oraria serale del sabato). Il rilievo dell'ora di punta del mattino è stato effettuato in condizioni meteo di pioggia (con conseguente aggravio di traffico rispetto ad una giornata standard).

I rilevamenti veicolari sono stati effettuati in contemporanea sulle intersezioni d'indagine, nelle fasce orarie di interesse per la successiva modellazione degli scenari futuri, ovvero l'ora di punta del mattino (7:30-8:30) del giorno lavorativo e l'ora di punta serale del sabato (16:30-17:30), di prassi indicato come il più gravoso per quanto riguarda i flussi indotti dalla struttura commerciale.

Tali rilievi sono stati effettuati tramite conteggio a vista del numero di passaggi veicolari in corrispondenza delle due intersezioni (int 1 e int 2, rispettivamente con via Palmanova e con il raccordo Nord), suddividendo l'intero rilievo per tipologia di veicoli (biciclette, autovetture, furgoni, autobus/corriere, veicoli pesanti) e per tipo di manovra effettuata, secondo lo schema di seguito riportato in figura.

Intersezione tipo "a T", con indicata la numerazione delle singole manovre

Partendo dai risultati di rilievo distinti per categorie di veicoli, il calcolo dei veicoli equivalenti è stato effettuato assumendo i seguenti coefficienti di ponderazione: 1,0 per le autovetture, 0,5 per le biciclette e motocicli, 1,5 per i furgoni e 2,5 per veicoli pesanti e autobus/corriere.

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

I risultati dei rilevamenti sono riassunti di seguito in tabella in termini di veicoli equivalenti , distinti per le due intersezioni e per fascia oraria, ponendo in evidenza anche la percentuale di veicoli pesanti, necessaria nel successivo calcolo prestazionale.

	Numerazione	Rilievo	mattino	Rilie	o sera
	Manovra	V eq	% pesanti	V eq	% pesanti
	Manovra 1	327.5	22.82%	228	0.44%
01	Manovra 2	424	24.83%	156.5	3.36%
ione	Manovra 3	97.5	0.00%	146	0.00%
Intersezione 01	Manovra 4	14	0.00%	9	0.00%
Inte	Manovra 5	149.5	1.38%	109	0.00%
	Manovra 6	15	16.67%	10	0.00%
	Manovra 1	203	19.35%	146	2.13%
02	Manovra 2	358.5	21.51%	118.5	3.57%
ione	Manovra 3	90.5	18.57%	53	1.96%
Intersezione 02	Manovra 4	38	52.38%	6	0.00%
Inte	Manovra 5	146	7.87%	92	0.00%
	Manovra 6	60	33.33%	14	0.00%

Sull'intersezione 3, tra via Ippolito Nievo e la SS 14, sono state effettuate delle valutazioni semplificate. A tal fine si è provveduto, nelle medesime ore di punta, a registrare non tanto il numero di veicoli gravanti sull'intersezione, quanto piuttosto la loro interazione con i tempi del segnale semaforico ivi posizionato (uscita via Ippolito Nievo).

Panoramica dell'intersezione 3 e del segnale semaforico analizzato

Le osservazioni non sono state quindi riassunte per fascia oraria, ma per singolo ciclo, in riferimento al solo tempo di verde del segnale d'interesse.

Sono stati dunque registrati (vedi tabella): il numero di veicoli in coda all'istante di inizio verde, il numero di veicoli transitati durante il tempo di verde, il numero di veicoli residui in coda al termine del tempo di verde e (nel caso di assenza di questi ultimi) il tempo di verde residuo (dal passaggio del'ultimo veicolo all'istante di fine verde).

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

Mattino	Coda	Passaggi	Coda	Verde residuo	Verde residuo
Wattino	iniziale	Totali	finale	[sec]	medio [sec]
Ciclo 01	0	2	0	10	
Ciclo 02	0	1	1	7	
Ciclo 03	3	3	0	10	
Ciclo 04	0	1	0	5	
Ciclo 05	1	3	1	5	6.2
Ciclo 06	5	6	0	7	6.2
Ciclo 07	3	5	2	0	
Ciclo 08	5	6	0	4	
Ciclo 09	1	3	0	6	
Ciclo 10	2	2	0	Ω	

Sera	Coda	Passaggi	Coda	Verde residuo	Verde residuo
Sera	iniziale	Totali	finale	[sec]	medio [sec]
Ciclo 01	4	6	0	7	
Ciclo 02	1	2	0	12	
Ciclo 03	2	2	0	13	
Ciclo 04	1	2	0	6	
Ciclo 05	1	3	0	4	8.5
Ciclo 06	2	3	0	13	0.5
Ciclo 07	2	5	0	2	
Ciclo 08	0	1	0	8	
Ciclo 09	1	1	0	15	
Ciclo 10	1	3	0	5	

Intersezione 3 - Rilievo dei passaggi veicolari e relativi tempi

A livello riassuntivo:

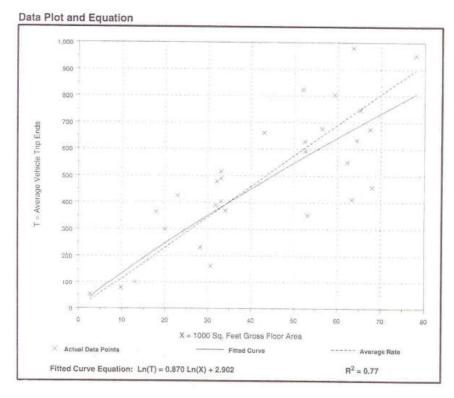
- il ciclo dell'intero impianto semaforico dura 70 secondi;
- al ramo di via Ippolito Nievo compete una fase della durata di 20 secondi;
- la manovra è molto poco trafficata; 0
- nel momento in cui scatta il verde il numero minimo/medio/massimo di veicoli in coda è pari a 0/2,0/5 veicoli nella fascia oraria del mattino e a 0/1,5/4 veicoli nella fascia oraria della sera;
- la coda esistente si esaurisce in tempi rapidissimi;
- ad ogni ciclo, nel momento in cui è transitato l'ultimo veicolo, il segnale ha ancora un'ottima riserva di verde, qualitativamente pari a circa un terzo del ciclo di segnagle (mediamente 6,2 secondi la mattina e 8.5 secondi la sera);
- nei casi in cui a fine fase avanzano zero (o comunque pochi) secondi di verde, ciò è dovuto alla tipologia di arrivi (in pratica passa una vettura sul giallo ma in precedenza c'è stato un buco di diversi secondi).

SCENARI FUTURI DELLA VIABILITÀ 04.

04.01 Stima del potere attrattivo

Per stimare il traffico generato dalle due aree oggetto di variante urbanistica si utilizza la metodologia proposta dal Manuale "Trip Generation" pubblicato dall'Institute of Transportation Engineers, (ITE)¹, da tempo diffusa sia negli Stati Uniti che in altri Paesi.

Questa procedura standard si basa su funzioni di generazione/attrazione e/o indici per categoria di destinazione ed uso del suolo. Tali funzioni, sviluppate empiricamente negli Stati Uniti in base all'analisi statistica di gruppi di strutture omogenee per destinazione d'uso, sono parametrizzate su grandezze caratteristiche, come superficie di vendita, numero di addetti, etc.


¹ Institute of Transportation Engineers, "Trip Generation", 9th edition, ITE, Washington 2012.

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

Manuale Trip Generation - Esempio di curva di regressione empirica (funzione superficie di vendita - spostamenti attratti)

Le variabili indipendenti delle funzioni generative, ovvero questi indici parametrici, sono rapportate alle stesse grandezze nelle dimensioni del particolare caso in studio e consentono di stimare i valori di traffico indotto in diverse fasce orarie, specificando per ogni classe di "land use" quella che statisticamente di identifica come ora di punta.

Nel presente caso di studio si sono considerate le attività di seguito codificate secondo il manuale:

- Area B, categoria "industrial"
 - Attività n°140 Manufacturing²
- Area A2, categoria "retail"
 - Attività n°813 Free Standing Discount Superstore³
 - Attività n°815 Free-Standing Discount Store
- Area A1, categoria "retail"
 - Attività n°850 Supermarket⁴

³ Definito come: "...are similar to the free-standing discount stores described in Land Use 815, with the exception that they also contain a full service grocery department under the same roof ... Free-standing discount store (Land Use 815) is a related use.

Via Duino 1/1 33100 Udine

² Funzione proposta in due forme, una per superficie una per numero impiegati, applicate entrambe. Si è quindi scelto il risultato più gravoso.

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

Dal calcolo si ottengono quindi i risultati riassunti nella successiva tabella, nella quale si evidenziano i valori numerici assunti quali flussi di traffico additivi nello scenario futuro, in entrata e uscita da ciascuna area, distinti per fasce orarie.

Tabella: flussi indotti dall'insediamento contemporaneo delle tre attività (manuale Trip Generation, ITE 9th edition)

								Dist	ribuzione de	i viaggi gen	erati		А	ssunzione s	cenario futu	ro
Sito	Settore	Superficie	Superficie	Descrizione /	Variabile	indipendente	F	unta mattin	0	Pu	ınta pomerig	gio	Punta	mattino	Punta po	omeriggio
	oonoro	[mq]	[K Sq. Feet]	/ Codice ITE	vanabno	шаронооно	In	Out	Pass-By	In	Out	Pass-By	In	Out	In	Out
В	Manufatturiero	600	6.458	Manufacturing 140	6.5	KSF ²	4	1	0	2	3	0	4	1	2	3
	Manufatturiero	000	0.436	Manufacturing 140	30.0	Employees	9	3	0	5	6	0	9	3	5	6
A2	Commerciale all'ingrosso	900	9.688	Free Standing Discount Superstore 813	9.7	KSF ²	7	6	5	15	15	12	10	8	21	21
	diriigiosso			Free-Standing Discount Store 815	9.7	KSF ²	6	3	2	20	20	8	7	4	24	24
A 1	Supermarket	1400	15.070	Supermarket 850	15.1	KSF ²	20	12	18	47	45	51	30	22	72	70

Area B -	9	3	5	6
Area A -	36	25	96	94

Il flusso di pass-by, prodotto solo dall'edificio "A1", è stato ripartito tra flussi in ingresso e uscita secondo i pesi relativi. I flussi indotti sono quindi stati sommati nelle due ore di punta, successivamente dovranno essere ripartiti secondo le direttrici degli spostamenti.

Globalmente è quindi prevista una generazione di 73 veicoli/ora nell'orario di punta del mattino e 201 veicoli/ora nell'orario di punta serale. Di questi spostamenti, il 71% risulta imputabile alla sola area "A1" Supermarket (70% mattino, 71% sera), mentre il 21% risulta imputabile all'area "A2" commerciale all'ingrosso (14% mattino, 24% sera) ed il solo 8% compete all'area "B" manifatturiera (16% mattino, 5% sera). Tali numeri forniscono un'immediata evidenza di come di fatto il contributo del supermarket risulti quello con incidenza nettamente maggiore rispetto agli altri due, e al contempo di come il contributo dell'area manifatturiera possa ritenersi quasi trascurabile rispetto alle grandezze in gioco.

Da subito è importante specificare che allo stato attuale non sono state registrate manifestazioni di interesse concrete per le aree "A2" e "B", quindi verosimilmente nello scenario progettuale più prossimo i fabbricati ivi presenti resteranno vuoti.

Nello scenario di progetto sono stati tuttavia valutati, secondo la medesima metodologia, anche gli spostamenti generati e attratti da tali attività, alfine di porsi nella situazione più gravosa possibile per la circolazione stradale, seppure riferibile ad uno scenario temporale distante e potenzialmente inattuabile.

Tutte le altre valutazioni sono state effettuate a favore di sicurezza.

⁴ Esercizi commerciali adibiti alla vendita di alimentari, inclusi generi per la manutenzione e la pulizia della casa.

Via Duino 1/1 33100 Udine 0432 511556 — info@serinsrl.com

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

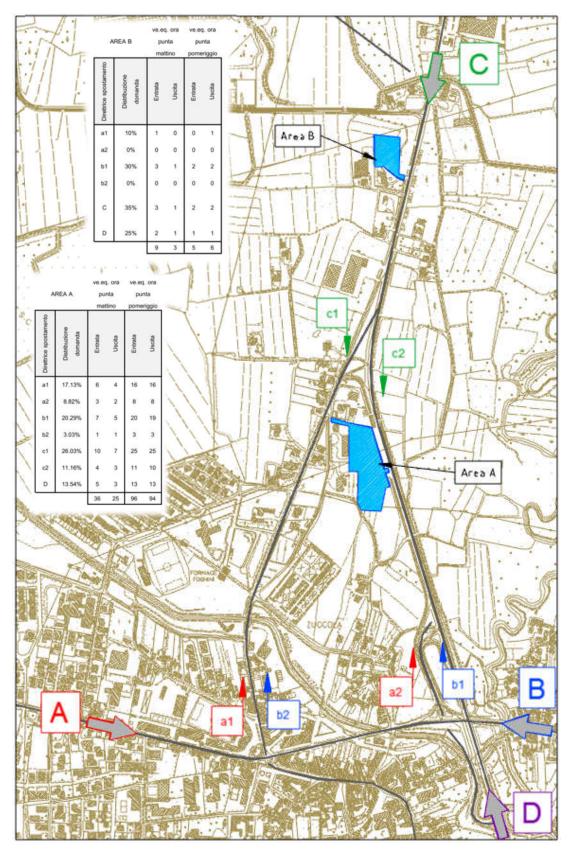
Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

04.02 Stima del traffico generato

I flussi additivi individuati al paragrafo precedente sono stati quindi distribuiti lungo le direttrici di traffico. La distribuzione della domanda, riassunta nella successiva figura, è stata individuata in considerazione di diversi aspetti:

- individuazione del bacino di utenza potenziale nell'area di studio vasta compresa grosso modo tra gli abitati di Gonars, Castions di Strada, Muzzana del Turgnano, Carlino e Torviscosa;
- le singole zone del territorio (comuni e frazioni) generano spostamenti in proporzione agli abitanti ed in proporzione inversa alla distanza dall'area di studio;
- le direttrici di generazione-attrazione, riassunte graficamente nel successivo schema planimetrico, sono sostanzialmente 4, "A" e "B" relative alla S.S. 14 (a loro volta scomponibili nei percorsi "a1-a2" e "b1-b2") e "C" e "D" relative alla SR UD 80 (con "C" a sua volta scomponibile nei percorsi "c1-c2");
- l'itinerario di ingresso viene percorso a ritroso in uscita, ovvero si assume che la scelta del percorso non cambi tra andata e ritorno;
- il numero di clienti attratti dall'esercizio commerciale, e conseguentemente il numero degli spostamenti, diminuisce in funzione della presenza di attività commerciali simili nella stessa zona territoriale e, in maniera più lieve, della presenza di alternative lungo il percorso per raggiungere l'area di studio;
- per l'area A2 sono stati assunti gli stessi criteri dell'area A1, trattandosi anch'essa di attività commerciale;
- nel caso dell'area B, manifatturiera, è stato tenuto conto in maniera più semplice delle più probabili provenienze dei lavoratori ivi impiegati, immaginando un bacino di interesse più ampio che tiene conto anche dell'autostrada.

Individuata così la distribuzione percentuale della domanda, proporzionalmente sono stati ripartiti i flussi di traffico indotti dall'insediamento contemporaneo delle tre attività, determinati al paragrafo precedente. I risultati sono riassunti nella successiva figura.



Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

Ripartizione sulle direttrici di traffico della domanda indotta dalle tre attività

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

04.03 Flussi additivi risultanti

Assegnando alla rete i flussi fin qui calcolati, secondo le direttrici individuate, è possibile differenziarli, manovra per manovra, sulle tre intersezioni principali. In particolare le due intersezioni maggiormente gravate dai flussi additivi sono la 1 e la 2, ovvero quelle sulla SR UD 80, di seguito riportate in tabella.

	Additivi	mattino	Additi	vi sera
Numerazione Manovra	Intersezione 01	Intersezione 02	Intersezione 01	Intersezione 02
	V eq	V eq	V eq	V eq
Manovra 1	8	7	13	14
Manovra 2	6	4	14	14
Manovra 3	10	8	26	29
Manovra 4				
Manovra 5	8	13	25	30
Manovra 6				

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

05. ANALISI DEL TRAFFICO

Per l'analisi prestazionale del sistema è stato applicato il modello di calcolo dell'HCM⁵ per intersezioni non semaforizzate regolate da precedenza. Il modello è universalmente riconosciuto ed applicato a livello italiano ed internazionale per qualsiasi tipologia di caso di studio in ambito trasportistico per le analisi di capacità e prestazionali.

Nelle Appendici 1 e 2 si riportano per tutte le manovre analizzate i passaggi di calcolo ed i relativi risultati, sotto forma di foglio di calcolo, così come proposti dal Manuale stesso.

Per convenzione in appendice sono state mantenuti tutti i nomi dei parametri calcolo indicati nel manuale, quindi per approfondimenti e verifiche riguardo alla procedura si rimanda al manuale medesimo.

Si riassumere di seguito per sommi capi la base teorica della metodologia.

05.01 METODOLOGIA DI STUDIO DELLA CIRCOLAZIONE

Il fenomeno circolatorio veicolare si analizza, in genere, per due diverse e separate situazioni, denominate flusso ininterrotto e flusso interrotto.

Si è in condizioni di flusso ininterrotto quando i veicoli che percorrono un certo tratto di una corsia o di una strada non subiscono disturbo, o meglio non sono costretti ad arresti per cause estranee alla corrente di traffico.

Il flusso interrotto, al contrario, si instaura quando i veicoli che percorrono un certo tratto di una corsia o di una strada subiscono un disturbo e devono arrestarsi per motivi esterni alla corrente di traffico, quali la presenza di un semaforo o di un segnale o, in generale, per le interferenze con altri flussi veicolari.

Nel caso di flusso interrotto si ha quindi un insieme di veicoli in approccio al nodo (incontro tra due o più rami dell'infrastruttura stradale) sui vari rami, che giunti in prossimità della linea d'arresto, delimitante l'area di manovra, si separano per effettuare la manovra necessaria per scegliere la direzione voluta, dando luogo alle correnti di attraversamento (Through, secondo la terminologia adottata dall'HCM), correnti di svolta a destra (Right Turn) e correnti di svolta a sinistra (Left Turn). In questi punti il comportamento degli utenti è vincolato dalla presenza di lanterne semaforiche, segnali di "stop", o più in generale da regole di precedenza.

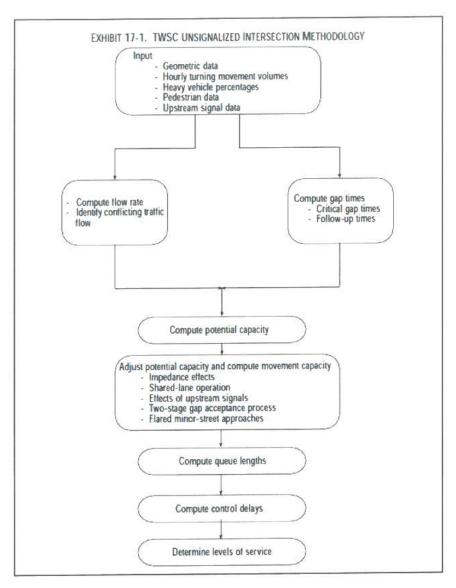
Queste modalità di controllo incidono in modo diverso sulla qualità della circolazione, sia nodi che sui tratti stradali adiacenti. Elemento comune è rappresentato dall'instaurarsi di fenomeni di attesa (ritardi nei tempi di viaggio), limitazioni della capacità dei rami e delle intersezioni con possibile formazione di code e, oltre certi limiti, l'insorgere di fenomeni di congestione del traffico.

Attraverso un'ampia sperimentazione, l'HCM ha reso possibile formalizzare analiticamente le condizioni di circolazione. Note le caratteristiche fisiche e funzionali dei componenti infrastrutturali (sezione stradale, disciplina della circolazione, velocità ammissibile, ecc.), i flussi veicolari in gioco e le condizioni limite di funzionamento degli elementi della rete (capacità), si utilizzano idonee formulazioni analitiche al fine di stimare i ritardi, e valutare conseguentemente il Livello di Servizio (LOS, Level Of Service).

⁵ Transportation Research Board, "Highway Capacity Manual", 5th edition, Washington, 2010. [http://hcm.trb.org/]

_

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48


Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

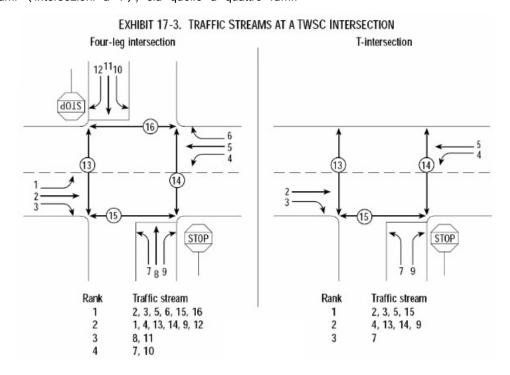
Il Livello di Servizio è una interpretazione delle effettive condizioni operative della rete, da ottime a pessime, associate a sei classi, dalla lettera A alla lettera F, quest'ultima corrispondente al raggiungimento e al superamento della capacità con conseguente innesco di una situazione di congestione.

05.01.01 STUDIO DELL'INTERSEZIONE A RASO NON SEMAFORIZZATA

La procedura riportata dal manuale HCM per il calcolo del livello di servizio di una intersezione a raso non semaforizzata è sintetizzata dallo schema a blocchi riportato in figura (Exhibit 17-1 del Manuale).

Questa procedura deriva dal Gap Acceptance Model, ossia un modello per il quale il funzionamento dell'intersezione è caratterizzato dal verificarsi di intervalli temporali liberi tra un passaggio e l'altro dei veicoli che appartengono a una delle due correnti principali, tali da permettere ai veicoli della corrente secondaria di immettersi nel flusso veicolare maggiore o di attraversare l'incrocio, e ai veicoli dell'altra corrente principale di svoltare a sinistra.

0432 511556 - info@serinsrl.com



Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

Con la sigla TWSC, Two Way Stop-Controlled Intersection, I'HCM indica sia le intersezioni a tre rami (intersezioni a T), sia quelle a quattro rami.

Ogni corrente di traffico, o manovra, deve seguire le regole sulla precedenza definite dal codice della strada. A tal proposito le manovre possibili per una intersezione a T sono classificate in 3 priorità di precedenza (Rank 1, 2,3).

Le variabili esprimenti le caratteristiche funzionali delle intersezioni a raso non semaforizzate sono riconducibili sostanzialmente alle seguenti:

- la capacità del ramo o della corsia di accesso al nodo, dedicati ad una manovra (di attraversamento o di svolta), che l'HCM indica come capacità potenziale della manovra nelle condizioni ideali;
- il rapporto v/c, dove v è il tasso di flusso relativo alla manovra e c è la capacità effettiva del ramo o corsia;
- il ritardo (delay) medio d [sec/veic] che i veicoli subiscono per rallentamento , arresto, ecc. nel superamento dell'intersezione, che costituisce il parametro per la misura del LOS.

La capacità potenziale di una data manovra x è data dalla seguente equazione:

$$_{\rho,x}=v_{c,x}\,\frac{e^{-v_{c,x}t_{c,x}/3600}}{1\!-\!e^{-v_{c,x}t_{f,x}/3600}}$$

dove le due grandezze fondamentali che concorrono al calcolo sono così definite:

l'intervallo critico (critical gap) tc: distanziamento temporale minimo, tra due veicoli sulla strada principale, tale da consentire l'immissione ideale da parte di un veicolo che proviene dalla secondaria;

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

il tempo di scalamento in coda (follow-up time) tf: distanziamento temporale medio che intercorre tra la partenza di un veicolo che proviene dalla strada secondaria ed il successivo veicolo accodato, nel caso in cui entrambi compiano la manovra di immissione usufruendo dello stesso varco spaziotemporale tra i veicoli della corrente principale;

il volume critico Vc,x: nelle intersezioni a raso non semaforizzate una specifica manovra x è direttamente e diversamente influenzata dalle correnti veicolari che contemporaneamente impegnano l'incrocio. Il volume critico corrisponde al numero massimo di veicoli che disturbano una determinata manovra x e dipende dal Rank che compete alla specifica manovra.

La procedura di calcolo delle grandezze di cui sopra risulta particolarmente complessa ed articolata in diversi passaggi, per i quali si rimanda al Manuale.

Determinate le capacità potenziali per ogni manovra, è possibile determinare il ritardo medio d subito dai veicoli soggetti ad obbligo di precedenza, tramite la seguente equazione (HCM exhibit 17-38):

$$d = \frac{3600}{c_{m,x}} + 900T \left[\frac{v_x}{c_{m,x}} - 1 + \sqrt{\left(\frac{v_x}{c_{m,x}} - 1\right)^2 + \frac{\left(\frac{3600}{c_{m,x}}\right)\left(\frac{v_x}{c_{m,x}}\right)}{450T}} \right] + 5$$

dove:

d = tempo di ritardo (sec/veh);

Vx = volume della manovra secondaria x (veh/h);

Cm,x = capacità effettiva della manovra secondaria x (veh/h);

T = periodo di rilevamento dei flussi (h).

Il parametro di riferimento per l'individuazione del Livello di Servizio è il ritardo "d" (delay). L'HCM assegna uno specifico LOS a seconda dell'intervallo in cui ricade il ritardo calcolato, secondo le 6 classi in tabella.

Come già specificato in precedenza, l'intero flusso di calcolo è esplicitato nelle Appendici 1 e 2 utilizzando gli stessi fogli di calcolo proposti dal manuale HCM.

d (sec/veicolo)	LOS
d < 10	Α
10 < d < 15	В
15 < d < 25	С
25< d < 35	D
35 < d < 50	E
D > 50	F

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

05.02 Confronto before-after

Riguardo ai risultati dell'analisi, va innanzitutto precisato che i valori numerici determinati mediante l'applicazione del metodo HCM, già di per se buoni, risultano tuttavia pessimistici se rapportati all'osservazione qualitativa dello stato di fatto, avvenuta in sede di rilievo. In altre parole, le prestazioni reali dell'intersezione, in termini di ritardi sulle manovre secondarie, risultano migliori "dal vivo" rispetto a quelle stimate dal metodo di calcolo. Tale situazione è verosimile, dal momento che il modello applicato è stato pensato ed implementato in una realtà sociale, economica ed ambientale diversa rispetto a quella in esame.

Tuttavia l'applicazione del modello è l'unica strada che consenta un confronto numerico before-after, i cui risultati vanno esaminati in termini relativi.

Le successive tabelle riassumono a livello numerico i risultati del modello nei due scenari considerati, distinti per intersezioni e fasce orarie considerate.

Allo scopo di facilitare la lettura si riportando per ogni manovra i soli parametri di output fondamentali, individuati nel coefficiente di saturazione (v/c) espresso convenzionalmente come frazione dell'unità, nel tempo medio di attesa per veicolo (delay "d", espresso in secondi) e nel livello di servizio (Level Of Service LOS).

Fa	ascia oraria			Ora di punta	del mattin	0				Ora di punt	a della sera	1	
Scen	ario analizzato	;	Stato di fatt	0	Sc	enario Futi	ıro	;	Stato di fatt	0	Sc	enario Fut	ıro
	Manovra	5	6	4	5	6	4	5	6	4	5	6	4
	v (veh/h)	150	15	14	158	15	14	109	10	9	134	10	9
	cm (veh/h)	350	562	1055	341	554	1040	561	814	1269	531	787	1227
NE 1	v/c	0.429	0.027	0.013	0.463	0.027	0.013	0.194	0.012	0.007	0.252	0.013	0.007
SEZIC	Lungh. Coda	2.2	0.1	0.0	2.5	0.1	0.0	0.7	0.0	0.0	1.0	0.0	0.0
INTERSEZIONE	Delay (d) [sec]	23.0	11.6	8.5	24.6	11.7	8.5	13.0	9.5	7.9	14.1	9.6	8.0
=	LOS	С	В	Α	С	В	Α	В	Α	Α	В	Α	Α
	Ritardo e LOS	21.9	2 - C		23.4	7 - C		12.6	7 - B		13.7	5 - B	
	v (veh/h)	146	60	38	159	60	38	92	14	6	122	14	6
	cm (veh/h)	431	584	889	423	577	879	701	907	1417	662	875	1367
ONE 2	v/c	0.339	0.103	0.043	0.376	0.104	0.043	0.131	0.015	0.004	0.184	0.016	0.004
SEZIC	Lungh. Coda	1.5	0.3	0.1	1.8	0.3	0.1	0.5	0.0	0.0	0.7	0.0	0.0
INTERSEZIONE	Delay (d) [sec]	17.6	11.9	9.2	18.6	12.0	9.3	10.9	9.0	7.6	11.7	9.2	7.6
=	LOS	С	В	Α	С	В	Α	В	Α	Α	В	Α	Α
	Ritardo e LOS	15.9	6 - C		16.8	3 - C		10.6	6 - B		11.4	4 - B	

Se ne deduce:

- i livelli di servizio di tutte le manovre di scambio rimangono inalterati. Si ricorda come questo sia un parametro categoriale, dal momento che è associato ad un certo range di ritardo medio, e quindi la sola considerazione del LOS non è in grado di fornire un livello di dettaglio accurato ma semplicemente una visione qualitativa d'insieme, il cui esito è ampiamente positivo;
- in termini di ritardi sule manovre di scambio valutate, l'incremento riscontrabile risulta irrisorio, basti pensare che globalmente questo si attesta su un 3,04%, differenziabile per intersezione e per fasce orarie:

0432 511556 - info@serinsrl.com

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

- sull'intersezione O1 si ha il +2,85% nell'ora di punta del mattino ed il +3,77% nell'ora di punta della sera;
- sull'intersezione 02 si ha il +2,28% nell'ora di punta del mattino ed il +3,25% nell'ora di punta della sera;
- per entrambe le intersezioni e per entrambe le fasce orarie, la manovra maggiormente vessata risulta sempre la numero 5, ovvero la svolta a sinistra dalla secondaria, caratterizzata da ritardi più importanti nella fascia oraria della mattina (dell'ordine dei 23-25 secondi per l'intersezione 1 e dei 18 secondi per l'intersezione 2) e più ridotti nella fascia oraria della sera (dell'ordine dei 13-14 secondi per l'intersezione 1 e dei 11 secondi per l'intersezione 2)
- in termini capacità la situazione è ben lontana dalla criticità, dal momento che le riserve della manovra maggiormente "delicata" (la numero 5 di svolta a sinistra dalla secondaria), risultano in ogni caso ampie, sempre superiori al 50%:
 - riserva di capacità sull'intersezione 01 del 54% nell'ora di punta del mattino e del 75% nell'ora di punta della sera;
 - riserva di capacità sull'intersezione 02 del 63% nell'ora di punta del mattino e del 82% nell'ora di punta della sera;
- complessivamente l'intersezione 2 risente maggiormente, in termini percentuali, dei nuovi flussi generati, pur rimanendo l'intersezione più "scarica" tra le due, quindi quella con prestazioni migliori (LOS B-A-A rispetto al LOS C-B-A dell'intersezione 1).

Nel complesso le prestazioni del sistema risultano buone allo stato attuale e rimarranno buone (pressoché invariate) nello scenario futuro. Si può quindi ritenere che i flussi incrementali generati dalla nuova struttura non incidano in senso assoluto.

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

06. CONCLUSION

Nel presente studio è stato analizzato l'impatto sul sistema viabilistico dei comuni di S. Giorgio di Nogaro - Porpetto conseguente all'inversione della destinazione urbanistica di due aree (una Zona D, industriale-artigianale con zona H3, commerciale e viceversa).

Sebbene in tali aree siano presenti o siano comunque stati presenti, in un passato molto recente, le relative attività, si è comunque scelto, a base dello studio, di lavorare nell'ipotesi che allo stato attuale tali aree siano caratterizzate da potenziale di attrazione - generazione nullo. I flussi di traffico additivi predetti per le nuove attività sono stati quindi sommati ai flussi attuali rilevati in sito nelle ore di punta del mattino e della sera, dal momento che la punta di domanda si genera in fasce orarie diverse per le diverse tipologie di attività considerate.

Le strutture in questione andranno ad incidere sulla viabilità della SR UD 80 (in particolare sulle due intersezioni a T regolate con diritto di precedenza) e della S.S. 14 (in particolare sull'intersezione semaforizzata con via Ippolito Nievo).

È stato pertanto analizzato lo stato di fatto relativo al sistema in questione, rilevando i flussi di traffico attualmente gravanti su di esso ed analizzandone le prestazioni mediante il modello di analisi dell'HCM.

Quindi si è quantificato il potere attrattivo delle nuove attività in termini di autoveicoli nelle ore di punta, distribuendo tali spostamenti lungo le direttrici della rete stradale afferente. Sommando a questi i flussi rilevati, distintamente per le due ore di punta, è stato riapplicato il medesimo modello di calcolo (HCM TWSC) allo scenario futuro.

Tutte le scelte effettuate risultano a fattore di sicurezza, quindi lo scenario ipotizzato rappresenta una situazione "limite", più gravosa rispetto a quella che sarà verosimile aspettarsi nella realtà.

È inoltre opportuno rimarcare come dall'esperienza empirica si riscontra che il reale esercizio della viabilità offre quasi sempre prestazioni migliori rispetto a quelle stimate mediante i modelli. Tale situazione è confermata nell'area di studio dall'analisi dello stato attuale (il traffico scorre molto più fluentemente rispetto a quanto inquadrato dalla simulazione HCM). Verosimilmente quindi anche l'analisi dello scenario futuro dovrebbe esser letta in tale prospettiva.

In conclusione, è il caso di evidenziare gli aspetti di seguito riportati.

- Visti gli ordini di grandezza dei carichi di traffico indotti da tre ipotetiche strutture possibilmente coinvolte, è chiaro come la struttura commerciale "supermarket" (vendita al dettaglio di generi alimentari) risulti nettamente più impattante delle altre due (manifattura e vendita all'ingrosso).
- Senza entrare nel merito dell'analisi della circolazione, visto il punto precedente è chiaro come il nuovo assetto del P.R.G.C. risulti migliorativo già solo a livello concettuale, permettendo grazie al doppio accesso di "diluire" più adeguatamente i flussi generati, che altrimenti sarebbero andati interamente a gravare sul singolo accesso all'area, direttamente sulla SR UD 80.
- iii. I risultati offerti dall'analisi della circolazione hanno messo in luce carichi di traffico indotti molto piccoli, marginali in rapporto agli ordini di grandezza dei flussi di traffico attualmente gravanti sul sistema (si può affermare che variazioni di questo tipo

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

possano rientrare nelle normali fluttuazioni di traffico, a prescindere dall'apertura della struttura).

- iv. Nel complesso le future prestazioni del sistema risultano buone, o in ogni caso del tutto assimilabili a quelle attuali: i livelli di servizio rimangano invariati per tutte le manovre dell'intero sistema, ed anche ad un'analisi di dettaglio dei parametri di output del modello.
- Le riserve di capacità del sistema rimarranno, nello scenario futuro, sempre superiori al
- Il nuovo assetto del P.R.G.C. risulta migliorativo anche per la sicurezza della vi. circolazione, in virtù della maggiore distribuzione dei flussi e di come questi risultino indirizzati verso intersezioni esistenti, di geometria ampia e ben definita, piuttosto che interamente concentrati su un singolo accesso diretto alla SR UD 80.

Alla luce dei risultati ottenuti si ritiene quindi che il sistema di traffico analizzato, organizzato come allo stato attuale, sarà perfettamente in grado di reggere, con prestazioni assimilabili alle attuali, gli incrementi futuri. Per tale motivo si ritiene dunque che non sia necessario agire in maniera strutturale sull'organizzazione del sistema stesso.

Oltre alle considerazioni fin qui riportate e derivanti dai risultati dell'analisi, è opportuno evidenziare gli ulteriori aspetti di seguito riportati.

- È fortemente sconsigliato l'introduzione di rotatorie sul tratto di SR UD 80 interessato, sia in sostituzione delle intersezioni a T analizzate, sia come nuovo accesso all'area commerciale. Modifiche viabilistiche di questo tipo porterebbero ad una ripartizione dei ritardi che risulterebbe deleteria per le prestazioni della SR UD 80, rallentando in particolar modo i veicoli pesanti, e conseguentemente il deflusso globale. Mantenendo lo status quo (intersezioni a T), i ritardi (peraltro esigui) resterebbero di sola competenza dei flussi provenienti dalle strade secondarie, mantenendo indisturbato il flusso sulla principale.
- ii. Pur senza agire in maniera strutturale, è possibile attuare azioni migliorative a basso impatto economico e correggendo la geometria del nodo principale di accesso alla nuova area commerciale al fine di migliorare il sistema delle precedenze, ovvero la disciplina della circolazione.
- iii. Potrà essere possibile il riordino dell'area antistante alla recinzione del fabbricato (v. foto), verso la SR UD 80, eliminando l'attuale fascia pavimentata utilizzata per la sosta, perlopiù di veicoli pesanti, fattore di interesse pubblico per la sicurezza della circolazione sul tratto.

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

SR UD 80: Area antistante alla recinzione dell'area A, utilizzabile per ricavare nuovi spazi stradali

Nella suddetta area potranno quindi essere ricavati nuovi spazi stradali, ad esempio iv. una corsia di decelerazione per l'ingresso all'area per i veicoli provenienti da nord, oppure una corsia di accumulo centrale per la svolta a sinistra per i veicoli provenienti sa sud, soluzione auspicabile rispetto alla precedente. In ogni caso tali eventuali soluzioni dovranno essere considerate nelle successive fasi realizzative, in concerto con l'Ente gestore della SR UD 80, anche in seguito ad un ulteriore approfondimento d'indagine sui flussi generati.

Udine, 17 Febbraio 2020

Ing. Nicola Falconetti

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

01. **APPENDICE 01** FOGLI DI CALCOLO HCM - SCENARIO STATO DI FATTO

General Information				Site Info	rmation							
Analyst	Ing. F	alconetti		Intersect	tion			Int1 SP80	-Palmanova			
Agency or Company	Ser	in Srl		Jurisdict	ion			Reg	jional			
Date Performed	07-g	jen-20		Analysis	Year			2	019			
Analysis Time Period	Sample	Problems										
Worksheet 2												
Vehicle Volumes and Adjustme	ent											
					Vehicle '	Volumes	and Adju	stments				
Movement	1	2	3	4	5	6	7	8	9	10	11	12
Volume (veh/h), V		424	98	14	328		150		15			
Peak-hour factor, PHF		1.000	1.000	1.000	1.000		1.000		1.000			
Hourly flow rate, v (veh/hr)		424.0	98.0	14.0	328.0		150.0		15.0			
Proportion of heavy vehicles, P _{HV}		0.25	0.00	0.00	0.23		0.01		0.17			
Pedestrian Volumes and Adjus	tments											
Movement		13			14			15			16	
Flow, Vp (ped/h)												
Lane width, w (m)												
Walking speed ¹ , S _p (m/s)						-						
Percent blockage, fp (Eq 17-11)												

Worksheet 3											
Lane Designation: Here, Lane	1 is the la	ne close:	st to the	centerline	e, etc.						
Movements		Lar	ne 1	La	ne 2	Lar	ne 3	Grad	le, G	Chan	nel RT
1, 2, 3		2	,3					0.	00	1	٧o
4 , 5, 6			4		5			0.	00	1	٧o
7, 8, 9			7		9			0.	00	1	٧o
10, 11, 12								0.	00	1	٧o
Flared Minor Street Approach											
Movement 9			Yes	х	No	Storage s	pace, veh	1 ()		
Movement 12			Yes		No	Storage s	pace, veh	1 ()		
Median Storage*											
*includes raised median or st	riped media	an (RM) o	r two-way	left-turn	lane (TWL	TL)					
					Type						
Movements 7 and 8				Yes	Undivided	х	No	Storage s	pace, veh	1	0
Movements 10 and 11				Yes	Raised Curt		No	Storage s	pace, veh	1	0
Upstream Signals											
	Mvmts	D(m)	Sprog	(km/h)	Cycle (s)	GrnEff (s)	ArrType	SatFlw, s	(veh/hg)	Vprog (veh/h)	Factor f
S ₂	Pro-LT						3				
32	TH										
S ₅	Pro-LT						3				
S 5	TH										
Delay to Major Street Vehicles	: These da	ata are fo	r the sub	ject unsi	gnalized i	ntersection	on				
						N	lovement	2	N	lovemen	5
Shared lane volume, major stree	et through v	ehicles, v	'ii								
Shared lane volume, major stree	et right vehi	icles, v _{i2}									
Saturation flow rate, major stree	t through v	ehicles, s	1				1800			1800	
Saturation flow rate, major stree	t right vehic	cles, s _{i2}					700			700	
Number of major street through	lanes						1			1	
Length of study period, T (h)								1.	00		

Critical G	ap and Follow	-Up Time							
			,	+ t _{c,HV} P _{HV}					
		Maj	or LT	Mino	r RT	Mino	r TH	Mine	r LT
Movemen		1	4	9	12	8	11	7	10
t _{c,base} (Exh	ibit 17-5)		4.1	6.2				7.1	
t _{c,HV}			1.0	1.0				1.0	
P_{HV} (from \	Vorksheet 2)		0.00	0.17				0.01	
t _{c,G}				0.1				0.2	
G (from Wo	orksheet 2)		0.0	0.0				0.0	
t _{3,LT}								0.7	
t _{c.T}	single stage							0.0	
16,1	two stage								
t _c (Eq 17-1)	single stage		4.100	6.367				6.414	
	two stage								
				$t_f = t_{f,base} +$	t _{f,HV} P _{HV}				
		Maj	or LT	Mino	or RT	Mino	or TH	Mine	or LT
Movemen	t	1	4	9	12	8	11	7	10
t _{f,base} (Exh	ibit 17-5)		2.2	3.3				3.5	
t _{r,HV}			0.9	0.9				0.9	
P _{HV} (from \	Vorksheet 2)		0.00	0.17				0.01	
t _f (Equatio	n 17-2)		2.200	3.450				3.512	
Workshee	et 5a								
Time to C	lear Standing	Queue (Co	omputation	1)					
						Move	ment 2	Move	nent 5
						$\mathbf{v}_{T,prog}$	$V_{L,prog}$	V _{T,prog}	V _{L,pros}
Effective of	reen, g _{eff} (s)								
Cycle leng	th, C (s)								
Saturation	flow rate, s (ve	h/h)							
Arrival typ	е						3		3
. (
	er 16)								
R _p (chapte			D /F	auation 17	17)				
R _p (chapte P, Proport	ion of vehicles	arriving on	green, P (E	qualion 17-	17)				
g _{q1} (Equat	ion of vehicles a ion 17-18) ion 17-19)	arriving on	green, P (E	qualion 17-	17)				

mpedance and Capacity Calculations				
Step 1: RT from Minor Street		V ₉		V ₁₂
Conflicting flows (Exhibit 17-4)	v _{c.9} =	473	v _{c,12} =	
Potential capacity (Equation 17-3 or 17-29)	C _{0.9} =	562	C _{p,12} =	
Ped impedance factor (Equation 17-12)	p _{p.9} =	1.000	p _{p.12} =	
Movement capacity (Equation 17-4)	c _{m.9} =	562	c _{m.12} =	
Prob of queue free state (Equation 17-5)	p _{0,9} =	0.973	p _{0,12} =	1.000
Step 2: LT from Major Street		V ₄		V ₁
Conflicting flows (Exhibit 17-4)	v _{c.4} =	522	v _{c.1} =	
Potential capacity (Equation 17-3 or 17-29)	C _{0.4} =	1055	C _{p,1} =	
Ped impedance factor (Equation 17-12)	p _{0.4} =	1.000	p _{p,1} =	
Movement capacity (Equation 17-4)	c _{m.4} =	1055	c _{m.1} =	
Prob of queue free state (Equation 17-5)	p _{0.4} =	0.9867	p _{0.1} =	1.000
Major left shared lane prob of queue free state (Equation 17-16)	p* _{0.4} =		p* _{0,1} =	
Step 3: TH from Minor Street (4-legged intersection only)		V ₈		V ₁₁
Conflicting flows (Exhibit 17-4)	v _{c.8} =		v _{c.11} =	
Potential capacity (Equation 17-3 or 17-29)	C _{p.8} =		C _{p.11} =	
Ped impedance factor (Equation 17-12)	p _{0.8} =		p _{p.11} =	
Capacity adjustment factor due to impeding movement (shared lanuse p*) (Equation 17-13)	e f ₈ =	0.987	f ₁₁ =	0.98
Movement capacity (Equation 17-7)	c _{m.8} =		c _{m,11} =	
Prob of queue free state	p _{0.8} =	1.0000	p _{0.11} =	1.000
Step 4: LT from Minor Street (4-legged intersection only)	0,0	V ₇	F-0,11	V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c.7} =		v _{c.10} =	
Potential capacity (Equation 17-3 or 17-29)	C _{p.7} =		C _{0.10} =	
Ped impedance factor (Equation 17-12)	p _{p,7} =	1.000	p _{p.10} =	1.00
Major left, minor through impedance factor	p", =		p" ₁₀ =	
Major left, minor through adjusted impedance factor (Equatio 17-8)			p' ₁₀ =	
Capacity adjustment factor due to impeding movements (Equation 17-14)	f ₇ =		f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m.7} =		c _{m,10} =	
Step 5: LT from Minor Street (T-intersection only)	-m,/	V ₇	-m,10	V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c.7} =	801	v _{c.10} =	10
Potential capacity (Equation 17-3 or 17-29)	C _{0.7} =	355	C _{p.10} =	
Ped impedance factor (Equation 17-12)	p _{p,7} =	1.000	p _{p,10} =	
Capacity adjustment factor due to impeding movement (shared lan-			1	
use p*) (Equation 17-13)	G f ₇ =	0.9867	f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m.7} =	350	c _{m,10} =	
Notes	1 111,1		10	

Worksheet 8						
Shared Lane Capacity						
Movement	v (veh/h)	c _m (veh/h)				c _{SH} (veh/h
7	150.0	350		Move	ments 7	350
8	0.0			Move	ments 9	562
9	15.0	562			_	
10	0.0				$\sum v_y$	
11	0.0			$c_{\scriptscriptstyle SL}$		_
12	0.0			32.	$\nabla \left(v_{\nu} \right)$)
					$\sum_{y} \left(\frac{1}{c_{m,j}} \right)$	-)
Worksheet 9						
Effect of Flared Minor-Street Ap	proach					
			Mvmt 9		Mvmt	Mvmt 12
c _{sep} (from Worksheet 6 or 7)						
Lane Flow Rate (from Worksheet	2)	15			0	

Delay (Equation 17-38)

Q_{sep} (Equation 17-34)

Sum of c_{sep} (Equation 17-36a) c_{act} (Equation 17-36)

Q_{sep} + 1 Round (Q_{sep} + 1) n_{max} (Equation 17-35) 15 0.00

562

0.000

0.0

0.000

Lane	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exhibit 17-2)	Delay and LOS
1	7	150	350	0.429	2.2	23.0	С	21.9
2	9	15	562	0.027	0.1	11.6	В	С
3								
1								
2								
3								
	Movement v (veh/h)		cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exh	ibit 17-2)
	1							
	4	14	1055	0.013	0.0	8.5	F	1
Workshee								
Delay to F	Rank 1 Vehicles							
				S ₂ Appro	ach		S ₅ Approach	
p₀』(Equat			p _{0,1} =			p _{0,4} =		
	e for stream 2 or 5							
	for stream 3 or 6							
	tion flow rate for stream 2							
	tion flow rate for stream 3	or 6						
p* _{0,j} , (Equa	ation 17-16)		p* _{0,1} =			p* _{0,4} =		
	elay for stream 1 or 4							
N numbar	of major street through la	nes	1			1		

Worksheet 1												
General Information				Site Info	rmation							
Analyst	Ing. Fa	alconetti		Intersect	ion			Int2 SP	80-SS14			
Agency or Company	Ser	in Srl		Jurisdicti	ion			Reg	jional			
Date Performed	07-g	en-20		Analysis	Year			20)19			
Analysis Time Period	Sample	Problems							•			
Worksheet 2												
Vehicle Volumes and Adjustme	ent											
					Vehicle '	/olumes	and Adjus	tments				
Movement	1	2	3	4	5	6	7	8	9	10	11	12
Volume (veh/h), V		359	91	38	203		146		60			
Peak-hour factor, PHF		1.000	1.000	1.000	1.000		1.000		1.000			
Hourly flow rate, v (veh/hr)		359.0	91.0	38.0	203.0		146.0		60.0			
Proportion of heavy vehicles, P _{HV}		0.22	0.19	0.52	0.19		0.08		0.33			
Pedestrian Volumes and Adjust	ments											
Movement		13			14			15			16	
Flow, Vp (ped/h)												
Lane width, w (m)												
Walking speed ¹ , S _p (m/s)								-				
Percent blockage, fp (Eq 17-11)												

Worksheet 3	4										
Lane Designation: Here, L Movements	ane 1 is the la		st to the o	_	e, etc. ne 2	La	ne 3	Grad	le, G	Chan	nel RT
1. 2. 3			.3	La	iie z	Lai	ie J	0.0	_		No.
4 , 5, 6			4		5			0.0			No
7, 8, 9			7		9			0.0			No.
10, 11, 12								0.0			No
Flared Minor Street Approa	ach							Ų.,	-	· · · · ·	
Movement 9			Yes	Х	No	Storage s	pace, veh	1 ()		
Movement 12			Yes	\neg	No	Storage s	pace, veh	1 ()	_	
Median Storage*											
*includes raised median of	or striped media	an (RM) o	r two-way	left-turn	lane (TWL	TL)					
		, , ,	,		Type	,					
Movements 7 and 8				Yes	Undivided	х	No	Storage s	pace, veh	1	0
Movements 10 and 11				Yes	Raised Curt	. 🗔	No	Storage s	pace, vel	1	0
Upstream Signals											
	Mvmts	D(m)	Sprog	(km/h)	Cycle (s)	GrnEff (s)	ArrType	SatFlw, s	(veh/hg)	Vprog (veh/h)	Factor f
é	Pro-LT						3				
s_2	TH										T
6-	Pro-LT						3				T
S ₅	TH										
Delay to Major Street Vehi	cles: These d	ata are fo	r the sub	ject unsi	gnalized i	ntersection	on				
						N	lovement	12	N	/lovemen	t 5
Shared lane volume, major s	street through v	ehicles, v	/ _{i1}								
Shared lane volume, major s											
Saturation flow rate, major s			1				1800			1800	-
Saturation flow rate, major s		cles, s _{i2}					700			700	-
Number of major street throu							1			1	
Length of study period, T (h)								1.0	00		

Critical G	ap and Follow	-Up Time							
			t _c = t _{c,base}	+ t _{c,HV} P _{HV}	+ t _{c,G} G -	t _{C,t} - t _{3,LT}			
		Majo	r LT	Mino	or RT	Mine	or TH	7,1 1,0 0.08 0.2 0.0 0.7 0.0 6.479 Minc 7 3.5 0.9 0.08 3.571	or LT
Movemen		1	4	9	12	8	11	7	10
t _{c,base} (Exh	ibit 17-5)		4.1	6.2				7.1	
t _{c,HV}			1.0	1.0				1.0	
P _{HV} (from \	Norksheet 2)		0.52	0.33				0.08	
t _{c,G}				0.1				0.2	
G (from Wo	orksheet 2)		0.0	0.0				0.0	
t _{3,LT}								0.7	
t _{c.T}	single stage							0.0	
°C,T	two stage								
t, (Eq 17-1)	single stage		4.624	6.533				6.479	
(C (Eq 17-1)	two stage								
				$t_f = t_{f,base} +$	t _{f,HV} P _{HV}	-		·	
		Majo	r LT	Mino	or RT	Mine	or TH	Mino	or LT
Movemen	t	1	4	9	12	8	11	7	10
t _{f,base} (Exh	ibit 17-5)		2.2	3.3				3.5	
t _{f,HV}			0.9	0.9				0.9	
P _{HV} (from \	Norksheet 2)		0.52	0.33				0.08	
t _f (Equatio	n 17-2)		2.671	3.600				3.571	
Workshee	et 5a								
Time to C	lear Standing (Queue (Co	mputation	1)					
						Move	ment 2	Move	ment 5
						V _{T,prog}	V _{L,prog}	V _{T,prog}	V _{L,prog}
Effective of	green, g _{eff} (s)								
Cycle leng	ath. C (s)								
	flow rate, s (ve	h/h)							
Arrival typ	e						3		3
v _{prog} (veh/	h)								
R _p (chapte	er 16)								
P, Proport	ion of vehicles a	arriving on	green, P (E	quation 17-	17)				
	tion 17-18)								
	tion 17-19)								
g _a (Equation	on 17-20)								

Worksheet 4

Step 1: RT from Minor Street Conflicting flows (Exhibit 17-4) Potential capacity (Equation 17-3 or 17-29) Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Step 2: LT from Major Street Conflicting flows (Exhibit 17-4) Potential capacity (Equation 17-3 or 17-29) Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-5) Step 3: TH from Minor Street (4-legged intersection only)	$\begin{aligned} v_{c,9} &= \\ c_{p,9} &= \\ p_{p,9} &= \\ c_{m,9} &= \\ p_{0,9} &= \\ \end{aligned}$ $v_{c,4} &= \\ c_{p,4} &= \\ c_{m,4} &= \\ p_{p,4} &= \\ c_{m,4} &= \\ p_{0,4} &= \\ p_{0,4} &= \\ p_{0,4} &= \\ \end{aligned}$	V ₉ 405 584 1.000 584 0.897 V ₄ 450 889 1.000 889 0.9573	$\begin{aligned} &v_{c,12} = \\ &c_{p,12} = \\ &p_{p,12} = \\ &c_{m,12} = \\ &c_{m,12} = \\ &p_{0,12} = \end{aligned}$ $v_{c,1} = \\ &c_{p,1} = \\ &c_{p,1} = \\ &c_{m,1} = \\ &p_{0,1} = \\ &p_{0,1} = \\ &p_{0,1} = \end{aligned}$	1.000 V ₁
Potential capacity (Equation 17-3 or 17-29) Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Step 2: LT from Major Street Conflicting flows (Exhibit 17-4) Potential capacity (Equation 17-3 or 17-29) Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)	C _{p,9} = p _{p,9} = c _{m,9} = p _{0,9} = v _{c,4} = c _{p,4} = p _{p,4} = c _{m,4} = p _{0,4} = p _{0,4} =	584 1.000 584 0.897 V ₄ 450 889 1.000 889 0.9573	$\begin{aligned} & c_{p,12} = \\ & p_{p,12} = \\ & c_{m,12} = \\ & p_{0,12} = \end{aligned}$ $& v_{c,1} = \\ & c_{p,1} = \\ & p_{p,1} = \\ & c_{m,1} = \\ & p_{0,1} = \end{aligned}$	v ₁
Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Step 2: LT from Major Street Conflicting flows (Exhibit 17-4) Potential capacity (Equation 17-3 or 17-29) Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)	P _{p,9} = C _{m,9} = P _{0,9} = V _{c,4} = C _{p,4} = P _{p,4} = C _{m,4} = P _{0,4} =	1.000 584 0.897 V ₄ 450 889 1.000 889 0.9573	$\begin{aligned} p_{p,12} &= \\ c_{m,12} &= \\ p_{0,12} &= \\ \end{aligned}$ $v_{c,1} &= \\ c_{p,1} &= \\ c_{p,1} &= \\ c_{m,1} &= \\ p_{0,1} &= \end{aligned}$	v ₁
Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Step 2: LT from Major Street Conflicting flows (Exhibit 17-4) Potential capacity (Equation 17-3 or 17-29) Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)	$c_{m,9} = p_{0,9} = v_{c,4} = c_{p,4} = c_{m,4} = p_{0,4} = p_{0,4} = c_{m,4} = p_{0,4} = c_{m,4} = c_{m$	584 0.897 V ₄ 450 889 1.000 889 0.9573	$c_{m,12} = \\ p_{0,12} = \\ v_{c,1} = \\ c_{p,1} = \\ c_{p,1} = \\ c_{m,1} = \\ p_{0,1} = \\ c_{m,1} = \\ p_{0,1} = \\ c_{m,1} = \\ c_$	v ₁
Prob of queue free state (Equation 17-5) Step 2: LT from Major Street Conflicting flows (Exhibit 17-4) Potential capacity (Equation 17-3 or 17-29) Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)	$p_{0,9} =$ $v_{c,4} =$ $c_{p,4} =$ $p_{p,4} =$ $c_{m,4} =$ $p_{0,4} =$	0.897 V ₄ 450 889 1.000 889 0.9573	$p_{0,12} =$ $v_{c,1} =$ $c_{p,1} =$ $p_{p,1} =$ $c_{m,1} =$ $p_{0,1} =$	v ₁
Step 2: LT from Major Street Conflicting flows (Exhibit 17-4) Potential capacity (Equation 17-3 or 17-29) Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-1) Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)	v _{c,4} = c _{p,4} = c _{p,4} = c _{m,4} = c _{m,4} = c _{m,4} =	V ₄ 450 889 1.000 889 0.9573	$v_{c,1} = c_{p,1} = c_{p,1} = c_{m,1} = c_{m,1} = c_{m,1} = c_{0,1} = c_{0$	v ₁
Conflicting flows (Exhibit 17-4) Potential capacity (Equation 17-3 or 17-29) Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)	$c_{p,4} = p_{p,4} = c_{m,4} = p_{0,4} = p_{0,4} = 0$	450 889 1.000 889 0.9573	$c_{p,1} = p_{p,1} = c_{m,1} = p_{0,1} = p_{0,1} = c_{m,1}$	
Potential capacity (Equation 17-3 or 17-29) Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)	$c_{p,4} = p_{p,4} = c_{m,4} = p_{0,4} = p_{0,4} = 0$	889 1.000 889 0.9573	$c_{p,1} = p_{p,1} = c_{m,1} = p_{0,1} = p_{0,1} = c_{m,1}$	1 000
Ped impedance factor (Equation 17-12) Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)	p _{p,4} = c _{m,4} = p _{0,4} =	1.000 889 0.9573	p _{p,1} = c _{m,1} = p _{0,1} =	1 000
Movement capacity (Equation 17-4) Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)	c _{m,4} = p _{0,4} =	889 0.9573	$c_{m,1} = p_{0,1} =$	1 000
Prob of queue free state (Equation 17-5) Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)	p _{0,4} =	0.9573	$p_{0,1} =$	1 000
Major left shared lane prob of queue free state (Equation 17-16) Step 3: TH from Minor Street (4-legged intersection only)				1 000
Step 3: TH from Minor Street (4-legged intersection only)	p* _{0,4} =		n*=	1.000
, , , , , , , , , , , , , , , , , , , ,			P 0,1 =	
		V ₈		V ₁₁
Conflicting flows (Exhibit 17-4)	$v_{c,8} =$		v _{c,11} =	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,8} =$		$c_{p,11} =$	
Ped impedance factor (Equation 17-12)	$p_{p,8} =$		$p_{p,11} =$	
Capacity adjustment factor due to impeding movement (shared lane	f ₈ =	0.957	f11 =	0.95
use p*) (Equation 17-13)	18 -	0.557	111 -	0.55
Movement capacity (Equation 17-7)	$c_{m,8} =$		$c_{m,11} =$	
Prob of queue free state	$p_{0,8} =$	1.0000	$p_{0,11} =$	1.000
Step 4: LT from Minor Street (4-legged intersection only)		V ₇		V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c,7} =		$v_{c,10} =$	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,7} =$		$c_{p,10} =$	
Ped impedance factor (Equation 17-12)	$p_{p,7} =$	1.000	$p_{p,10} =$	1.00
Major left, minor through impedance factor	p" ₇ =		p" ₁₀ =	
Major left, minor through adjusted impedance factor (Equation 17-8)	p' ₇ =		p' ₁₀ =	
Capacity adjustment factor due to impeding movements (Equation 17-14)	f ₇ =		f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m.7} =		c _{m.10} =	
Step 5: LT from Minor Street (T-intersection only)	1	V ₇		V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c,7} =	607.5	v _{c,10} =	
Potential capacity (Equation 17-3 or 17-29)	C _{0.7} =	450	C _{0.10} =	
Ped impedance factor (Equation 17-12)	p _{p,7} =	1.000	$p_{p,10} =$	
Capacity adjustment factor due to impeding movement (shared lane use p*) (Equation 17-13)	f ₇ =	0.9573	f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m,7} =	431	c _{m,10} =	
Notes				

Shared Lane Capacity						
Movement	v (veh/h)	c _m (veh/h)				c _{SH} (veh/h)
7	146.0	431		Movem	ents 7	431
8	0.0			Movem	ents 9	584
9	60.0	584			_	
10	0.0				$\sum v_y$	
11	0.0			C_{ext}	$= \frac{\sum_{y} v_{y}}{\sum_{y} \left(\frac{v_{y}}{c_{m,y}}\right)}$	_
12	0.0			- 311	$\nabla (v_v)$)
Effect of Flared Minor-Street App	roach					
•			Mvmt 9		Mvmt	Mvmt 12
c _{sep} (from Worksheet 6 or 7)			Mvmt 9			Mvmt 12
c _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2		60			0	
c _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38)		60 0.00	0.000			0.000
c _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2					0	
C _{aep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2) Delay (Equation 17-38) Q _{aep} (Equation 17-34) Q _{aep} + 1					0	
C _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (O _{sep} + 1)					0	
C _{aep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2) Delay (Equation 17-38) Q _{aep} (Equation 17-34) Q _{aep} + 1					0	
C _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35) S _{SH}					0	
C _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35) S _{3H} Sum of C _{sep} (Equation 17-36a)		0.00			0	
C _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35) S _{SH}		0.00			0	

Workshee	et 10 elay, Queue Length, Level	of Service						
Lane	Movement Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exhibit 17-2)	Delay and LOS
1	7	146	431	0.339	1.5	17.6	С	16.0
2	9	60	584	0.103	0.3	11.9	В	С
3								
1								
2								
3								
	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38) LOS (Exhibi		ibit 17-2)
	1		1					
	4	38	889	0.043	0.1	9.2	-	4
Workshee	et 11							
Delay to R	Rank 1 Vehicles							
				S ₂ Appro	oach		S ₅ Approach	
p _{o.j} (Equati	ion 17-5)		p _{0,1} =			p _{0,4} =		
	e for stream 2 or 5							
	e for stream 3 or 6							
	tion flow rate for stream 2 or							
	tion flow rate for stream 3 or	6						
	ation 17-16)		p* _{0,1} =			p* _{0,4} =		
d _{major left} , de	elay for stream 1 or 4							
	of major street through lane			,			•	•
drank 1, dela	ay for stream 2 or 5 (Equation	n 17-39)	1					

General Information				0:4- 1-6-	rmation							
Analyst		alconetti	-	Intersect				Int1 SP80	-Palmanova			
Agency or Company	Sei	rin Srl		Jurisdiction				Reg	jional			
Date Performed	07-9	gen-20	_	Analysis Year				2	019			
Analysis Time Period	Sample	Problems										
Worksheet 2												
Vehicle Volumes and Adjustme	ent											
		Vehicle Volumes and Adjustments										
Movement	1	2	3	4	5	6	7	8	9	10	11	12
Volume (veh/h), V		157	146	9	228		109		10			
Peak-hour factor, PHF		1.000	1.000	1.000	1.000		1.000		1.000			
Hourly flow rate, v (veh/hr)		157.0	146.0	9.0	228.0		109.0		10.0			
Proportion of heavy vehicles, P _{HV}		0.03	0.00	0.00	0.00		0.00		0.00			
Pedestrian Volumes and Adjus	tments											
Movement		13			14			15			16	
Flow, Vp (ped/h)												
Lane width, w (m)												
Walking speed ¹ , S _n (m/s)												
Percent blockage, fp (Eq 17-11)												

Worksheet 3											
Lane Designation: Here, Lane	e 1 is the la	ne close:	st to the o	centerlin	e, etc.						
Movements		Lar	ne 1	La	ne 2	Lar	1е 3	Grad	le, G	Chan	nel RT
1, 2, 3		2	,3					0.0	00	N	٧o
4 , 5, 6			4		5			0.0	00	N	No
7, 8, 9			7		9			0.0	00	١	٧o
10, 11, 12								0.0	00	N	٧o
Flared Minor Street Approach											
Movement 9			Yes	х	No	Storage s)	_	
Movement 12			Yes		No	Storage s	pace, veh	1 ()		
Median Storage*											
*includes raised median or s	triped media	an (RM) o	r two-way	left-turn	lane (TWL	TL)					
					Type						
Movements 7 and 8				Yes	Undivided	Х	No	Storage s	pace, veh	1	0
Movements 10 and 11				Yes	Raised Curt		No	Storage s	pace, veh	1	0
Upstream Signals											
	Mvmts	D(m)	Sprog	(km/h)	Cycle (s)	GrnEff (s)	ArrType	SatFlw, s	(veh/hg)	Vprog (veh/h)	Factor f
S ₂	Pro-LT						3				
s ₂	TH										
S ₅	Pro-LT						3				
9 5	TH										
Delay to Major Street Vehicle	s: These da	ata are fo	r the sub	ject unsi	gnalized i	ntersection	on				
						N	lovement	2	N	Novement	5
Shared lane volume, major stre	et through v	ehicles, v	'ii								
Shared lane volume, major stre	et right vehi	icles, v _{i2}									
Saturation flow rate, major street			1				1800			1800	
Saturation flow rate, major street	et right vehic	cles, s _{i2}					700			700	
Number of major street through	lanes						1			1	
Length of study period, T (h)								1.0	00		

	Sap and Follow-	-ре	+ = +	+ t _{cHV} P _{HV}	++ G-	t _ t			
		Mai	or LT	Mino	*, **	Mino	- TU	Mine	or LT
Movemen		1 1 1	4	9	12	8	11	7	10
t _{c.base} (Exh			4.1	6.2	12	0		7.1	10
t _{c.HV}			1.0	1.0		 		1.0	
	Worksheet 2)		0.00	0.00		 		0.00	
t _{c.G}	Trontonoct 2)		0.00	0.00		1		0.00	
G (from We	orkeheet 2)		0.0	0.0		1		0.0	
t _{s.l.T}	orkaneet 2)		0.0	0.0		1		0.7	
	single stage		†			 		0.0	
t _{c,T}	two stage		1					0.0	
	einale stane		4.100	6.200				6.400	
t _c (Eq 17-1)	two stage		1.100	0.200		1		0.100	
	two stage		1	t _f = t _{f,base} +	+ D				
				,	,				
			or LT	Mino		Mino			or LT
Movemen	•	1	4	9	12	8	11	7	10
t _{f,base} (Exh	IDIT 17-5)		2.2	3.3				3.5	
t _{f,HV}	Market and O		0.9	0.9				0.9	
	Worksheet 2)		0.00	0.00				0.00	
t _f (Equatio			2.200	3.300				3.500	
Workshee			 	4					
Time to C	lear Standing C	Queue (C	omputation	11)					
						Mover			nent 5
						V _{T,prog}	V _{L,prog}	V _{T,prog}	V _{L,prop}
Effective of	green, g _{eff} (s)								
Cycle leng									
Saturation	flow rate, s (vel	h/h)							
Arrival typ							3		3
v _{prog} (veh/									
R _p (chapte									
	tion of vehicles a	arriving or	green, P (E	Equation 17-1	17)				
a (Equat	tion 17-18)								
	tion 17-19)								

mpedance and Capacity Calculations				
Step 1: RT from Minor Street		V ₉		V ₁₂
Conflicting flows (Exhibit 17-4)	v _{c,9} =	230	v _{c,12} =	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,9} =$	814	$c_{p,12} =$	
Ped impedance factor (Equation 17-12)	$p_{p,9} =$	1.000	$p_{p,12} =$	
Movement capacity (Equation 17-4)	c _{m,9} =	814	$c_{m,12} =$	
Prob of queue free state (Equation 17-5)	$p_{0,9} =$	0.988	$p_{0,12} =$	1.000
Step 2: LT from Major Street		V ₄		V ₁
Conflicting flows (Exhibit 17-4)	v _{c,4} =	303	$v_{c,1} =$	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,4} =$	1269	$c_{p,1} =$	
Ped impedance factor (Equation 17-12)	$p_{p,4} =$	1.000	$p_{p,1} =$	
Movement capacity (Equation 17-4)	c _{m,4} =	1269	c _{m,1} =	
Prob of queue free state (Equation 17-5)	$p_{0,4} =$	0.9929	$p_{0,1} =$	1.000
Major left shared lane prob of queue free state (Equation 17-16)	$p^*_{0,4} =$		$p^{*}_{0,1} =$	
Step 3: TH from Minor Street (4-legged intersection only)		V ₈		V ₁₁
Conflicting flows (Exhibit 17-4)	v _{c,8} =		v _{c,11} =	
Potential capacity (Equation 17-3 or 17-29)	C _{p,8} =		$c_{p,11} =$	
Ped impedance factor (Equation 17-12)	$p_{p,8} =$		$p_{p,11} =$	
Capacity adjustment factor due to impeding movement (shared lane use p*) (Equation 17-13)	f ₈ =	0.993	f ₁₁ =	0.993
Movement capacity (Equation 17-7)	c _{m.8} =		c _{m.11} =	
Prob of queue free state	p _{0.8} =	1.0000	p _{0,11} =	1.000
Step 4: LT from Minor Street (4-legged intersection only)		V ₇		V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c,7} =		v _{c,10} =	
Potential capacity (Equation 17-3 or 17-29)	C _{p,7} =		$c_{p,10} =$	
Ped impedance factor (Equation 17-12)	p _{p.7} =	1.000	$p_{p,10} =$	1.000
Major left, minor through impedance factor	p" ₇ =		p" ₁₀ =	
Major left, minor through adjusted impedance factor (Equation 17-8)	p' ₇ =		p' ₁₀ =	
Capacity adjustment factor due to impeding movements (Equation 17-14)	f ₇ =		f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m.7} =		c _{m,10} =	
Step 5: LT from Minor Street (T-intersection only)	- 111,7	V ₇	-111,10	V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c.7} =	458	v _{c.10} =	- 10
Potential capacity (Equation 17-3 or 17-29)	C _{p.7} =	565	C _{p.10} =	
Ped impedance factor (Equation 17-12)	p _{p,7} =	1.000	p _{p,10} =	
Capacity adjustment factor due to impeding movement (shared lane			1	
use p*) (Equation 17-13)	f ₇ =	0.9929	f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m.7} =	561	c _{m,10} =	
Votes	,,,			

Worksheet 8					
Shared Lane Capacity					
Movement	v (veh/h)	c _m (veh/h)			c _{SH} (veh/h)
7	109.0	561		Movements 7	561
8	0.0			Movements 9	814
9	10.0	814		_	
10	0.0			$\sum v_y$	
11	0.0			$c_{SH} = \frac{y}{\sqrt{y}}$	_
12	0.0			$\nabla \left(v_{\nu} \right)$.)
		•		$\sum_{y} \left(\frac{1}{c_{m_s}} \right)$	_)
Worksheet 9					
Effect of Flared Minor-Street App	oroach				
			Mvmt 9	Mvmt	Mvmt 12
c _{sep} (from Worksheet 6 or 7)					
Lane Flow Rate (from Worksheet 2	2)	10	1 1	0	

Delay (Equation 17-38)

Q_{sep} (Equation 17-34)

Sum of c_{sep} (Equation 17-36a) c_{act} (Equation 17-36)

Q_{sep} + 1 Round (Q_{sep} + 1) n_{max} (Equation 17-35) 10 0.00

814

0.000

0.0

0.000

Lane	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exhibit 17-2)	Delay and LOS
1	7	109	561	0.194	0.7	13.0	В	12.7
2	9	10	814	0.012	0.0	9.5	Α	В
3								
1								
2								
3								
	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exh	ibit 17-2)
	1							
	4	9	1269	0.007	0.0	7.9	P	1
Workshee								
Delay to F	Rank 1 Vehicles		1					
<i>(</i> = .	. 47.5\			S ₂ Appro	pacn		S ₅ Approach	
p₀ʝ (Equat			p _{0,1} =			p _{0,4} =		
	e for stream 2 or 5 e for stream 3 or 6		-					
	tion flow rate for stream 2	- F	-					
	tion flow rate for stream 3		-					
	ation 17-16)	ט וכ	-+ -					
	elay for stream 1 or 4		p* _{0,1} =			p* _{0,4} =		
			1					
ıv, numbei	r of major street through la ay for stream 2 or 5 (Equat							

Worksheet 1												
General Information				Site Info	rmation							
Analyst	Ing. F	alconetti		Intersect	tion			Int2 SF	980-SS14			
Agency or Company	Ser	in Srl	_	Jurisdict	ion			Reg	gional			
Date Performed	07-9	en-20	_	Analysis	Year			2	019			
Analysis Time Period	Sample	Problems	-									
Worksheet 2												
Vehicle Volumes and Adjustme	ent											
					Vehicle '	/olumes	and Adjus	stments				
Movement	1	2	3	4	5	6	7	8	9	10	11	12
Volume (veh/h), V		119	53	6	146		92		14			
Peak-hour factor, PHF		1.000	1.000	1.000	1.000		1.000		1.000			
Hourly flow rate, v (veh/hr)		119.0	53.0	6.0	146.0		92.0		14.0			
Proportion of heavy vehicles, P _{HV}		0.04	0.02	0.00	0.02		0.00		0.00			
Pedestrian Volumes and Adjus	tments											
Movement		13			14			15			16	
Flow, Vp (ped/h)												
Lane width, w (m)												
Walking speed ¹ , S _p (m/s)								-				-
Percent blockage, fp (Eq 17-11)												

Lane Designation: Here, L	ane 1 is the la	ne close:	st to the o	enterlin	e, etc.						
Movements		Lar	ne 1	La	ane 2	Lar	1е 3	Grad	le, G	Char	nnel RT
1, 2, 3		2	:,3					0.0	00		No
4 , 5, 6			4		5			0.0	00		No
7, 8, 9			7		9			0.0	00		No
10, 11, 12								0.	00		No
Flared Minor Street Approa	ıch										
Movement 9			Yes	х	No	Storage s	pace, veh	. ()		
Movement 12			Yes		No	Storage s	pace, veh	()		
Median Storage*											
*includes raised median of	r striped medi	an (RM) o	r two-way	left-turn	lane (TWL	TL)					
					Type						
lovements 7 and 8				Yes	Undivided	х	No	Storage s	pace, vel	1	0
Movements 10 and 11	ements 10 and 11			Yes	Raised Curt		No	Storage s	pace, vel	1	0
Upstream Signals											
	Mvmts	D(m)	Sprog	(km/h)	Cycle (s)	GrnEff (s)	ArrType	SatFlw, s	(veh/hg)	Vprog (veh/h)	Factor 1
ē	Pro-LT						3				
s_2	TH										
	Pro-LT						3				
S ₅	TH										
Delay to Major Street Vehi	cles: These d	ata are fo	r the sub	ect uns	ignalized i	ntersection	on				
						N	lovement	2	N	lovemen	ıt 5
Shared lane volume, major s	treet through v	rehicles, v	/ _{i1}								
Shared lane volume, major s	treet right veh	icles, v _{i2}									
Saturation flow rate, major st	reet through v	ehicles, s	11				1800	ĺ		1800	
sataration now rate, major si						700 700			700		
	reet right vehi	cles, s _{i2}					700			700	
Saturation flow rate, major si Number of major street throu		cles, s _{i2}					1			1	

			to = to book	+ t _{cHV} P _{HV}	+ t a G -	tor-tare			
		Ma	jor LT	,	or RT	0,1	or TH	Mino	or LT
Movemen	t	1	4	9	12	8	11	7	10
t _{c.base} (Exh	ibit 17-5)		4.1	6.2				7.1	
t _{c,HV}			1.0	1.0				1.0	
P _{HV} (from \	Worksheet 2)		0.00	0.00				0.00	
t _{c,G}				0.1				0.2	
G (from W	orksheet 2)		0.0	0.0				0.0	
t _{3,LT}								0.7	
	single stage							0.0	
t _{c,T}	two stage								
t (F - 47.4)	single stage		4.100	6.200				6.400	
t _c (Eq 17-1)	two stage								
				t _f = t _{f,base} +	t _{f HV} P _{HV}				
		Ma	jor LT		or RT	Mino	or TH	Mino	or LT
Movemen	t	1	4	9	12	8	11	7	10
t _{rhase} (Exh	ibit 17-5)		2.2	3.3				3.5	
t _{f.HV}			0.9	0.9				0.9	
P _{HV} (from \	Worksheet 2)		0.00	0.00				0.00	
t _r (Equatio	n 17-2)		2.200	3.300				3.500	
Workshe	et 5a		•	•					
Time to C	lear Standing	Queue (C	omputation	1)					
						Move	ment 2	Move	ment 5
						V _{T,prog}	V _{L,prog}	V _{T,prog}	V _{L,prog}
Effective of	reen, g _{eff} (s)								
Cycle leng	ıth. C (s)								
	flow rate, s (ve	h/h)							
Arrival typ							3		3
v _{prog} (veh/	h)								
R _p (chapte	er 16)								
P, Proport	ion of vehicles	arriving o	n green, P (E	Equation 17-	17)				
						1			
g _{q1} (Equat	ion 17-18)								
g _{q1} (Equat g _{q2} (Equat	ion 17-18) ion 17-19)								

Worksheet 6				
Impedance and Capacity Calculations				
Step 1: RT from Minor Street	l	Va	1	V ₁₂
Conflicting flows (Exhibit 17-4)	v _{c,9} =	146	v _{c.12} =	¥12
Potential capacity (Equation 17-3 or 17-29)	C _{D.9} =	907	C _{D.12} =	
Ped impedance factor (Equation 17-12)	о _{р,9} =	1.000	p _{p,12} =	
Movement capacity (Equation 17-4)	C _{m.9} =	907	C _{m.12} =	
Prob of queue free state (Equation 17-5)	p _{0.9} =	0.985	p _{0.12} =	1.000
Step 2: LT from Major Street	P0,9 -	V _A	P0,12 -	V ₁
Conflicting flows (Exhibit 17-4)	v _{c4} =	172	v _{c.1} =	
Potential capacity (Equation 17-3 or 17-29)	C _{0.4} =	1417	C _{p.1} =	
Ped impedance factor (Equation 17-12)	р _{р.4} =	1.000	p _{p.1} =	
Movement capacity (Equation 17-4)	C _{m,4} =	1417	C _{m 1} =	
Prob of queue free state (Equation 17-5)	p _{0.4} =	0.9958	p _{0.1} =	1.0000
Major left shared lane prob of queue free state (Equation 17-16)	p* _{0.4} =	0.0000	p* _{0.1} =	1.0000
Step 3: TH from Minor Street (4-legged intersection only)	F 0,4	V ₈	F 0,1	V ₁₁
Conflicting flows (Exhibit 17-4)	v _{c,8} =		v _{c.11} =	
Potential capacity (Equation 17-3 or 17-29)	C _{0.8} =		C _{p.11} =	
Ped impedance factor (Equation 17-12)	p _{0.8} =		p _{p,11} =	
Capacity adjustment factor due to impeding movement (shared lane			1	
use p*) (Equation 17-13)	f ₈ =	0.996	f ₁₁ =	0.996
Movement capacity (Equation 17-7)	c _{m,8} =		C _{m,11} =	
Prob of queue free state	$p_{0.8} =$	1.0000	$p_{0,11} =$	1.0000
Step 4: LT from Minor Street (4-legged intersection only)		V ₇		V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c,7} =		v _{c,10} =	
Potential capacity (Equation 17-3 or 17-29)	$C_{p,7} =$		$c_{p,10} =$	
Ped impedance factor (Equation 17-12)	p _{p.7} =	1.000	p _{p,10} =	1.000
Major left, minor through impedance factor	p" ₇ =		p" ₁₀ =	
Major left, minor through adjusted impedance factor (Equation	n' -			
17-8)	p' ₇ =		p' ₁₀ =	
Capacity adjustment factor due to impeding movements (Equation			l.	
17-14)	f ₇ =		f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m 7} =		c _{m,10} =	
Step 5: LT from Minor Street (T-intersection only)		V ₇		V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c.7} =	291.5	v _{c.10} =	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,7} =$	703	$c_{0.10} =$	
Ped impedance factor (Equation 17-12)	p _{p.7} =	1.000	p _{p,10} =	
Capacity adjustment factor due to impeding movement (shared lane	f ₇ =	0.9958	f -	
use p*) (Equation 17-13)	17 -	0.9956	f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m,7} =	701	c _{m,10} =	
Notes				
 For 4-legged intersection, use steps 1, 2, 3, and 4. 				
For T-intersection, use steps 1, 2, and 5				

Shared Lane Capacity					
Movement	v (veh/h)	c _m (veh/h)			c _{SH} (veh/h
7	92.0	701		Movements 7	701
8	0.0			Movements 9	907
9	14.0	907		_	
10	0.0			$\sum v$	y
11	0.0			$c_{SH} = \frac{\sum_{y} v}{\sum_{y} \left(\frac{v}{c_{m}}\right)}$	
12	0.0	İ		- sn - v	·,)
Effect of Flared Minor-Street App	proach	1	Mymt 9	Mymt	Mymt 12
Effect of Flared Minor-Street App	proach				
-	proach		Mvmt 9	Mvmt	Mvmt 12
c _{sep} (from Worksheet 6 or 7)			Mvmt 9		Mvmt 12
c _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2		14		0	
C _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38)		14 0.00	0.000		0.000
Delay (Equation 17-38) Q _{sep} (Equation 17-34)				0	
C _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2) Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1				0	
c _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (Q _{sep} + 1)				0	
c _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (Q _{sep} + 1)		0.00		0	
c _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-34) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35) S _{SH}				0	
C _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38)		0.00		0	
c _{sep} (from Worksheet 6 or 7) Lane Flow Rate (from Worksheet 2 Delay (Equation 17-34) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35) S _{SH}		0.00		0	

Workshee								
Control De	elay, Queue Length, Level	of Service	•			•	•	
Lane	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exhibit 17-2)	Delay and LOS
1	7	92	701	0.131	0.5	10.9	В	10.7
2	9	14	907	0.015	0.0	9.0	Α	В
3								
1								
2								
3								
	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exh	ibit 17-2)
	1							
	4	6	1417	0.004	0.0	7.6	1	١
Workshee								
Delay to R	lank 1 Vehicles							
				S ₂ Appro	ach		S ₅ Approach	
p _{0,j} (Equati			$p_{0,1} =$			p _{0,4} =		
	for stream 2 or 5							
	for stream 3 or 6							
	ion flow rate for stream 2 or							
	ion flow rate for stream 3 or	6						
	ition 17-16)		p* _{0,1} =			p* _{0,4} =		
	elay for stream 1 or 4							
	of major street through lane							
d _{rank 1} , dela	y for stream 2 or 5 (Equation	n 17-39)						

Progetto: Piano Regolatore Generale Comunale - VARIANTE N. 48

Titolo: Studio di impatto sulla viabilità - Relazione tecnica

Rif. doc.: 19GS71-ImpattoTrafficoSanGiorgio.docx

02. **APPENDICE 02** FOGLI DI CALCOLO HCM - SCENARIO DI PROGETTO

General Information				0:4- 1-6-	rmation									
Analyst		alconetti	-	Intersection				Palmanova						
Agency or Company	Sei	in Srl	_	Jurisdiction				Reg	jional					
Date Performed	07-ç	jen-20	_	Analysis	Year			2	025					
Analysis Time Period	Sample	Problems												
Worksheet 2														
Vehicle Volumes and Adjustme	ent													
		Vehicle Volumes and A							ljustments					
Movement	1 2 3		4	5	6	7	8	9	10	11	12			
Volume (veh/h), V		430	108	14	336		158		15					
Peak-hour factor, PHF		1.000	1.000	1.000	1.000		1.000		1.000					
Hourly flow rate, v (veh/hr)		430.0	108.0	14.0	336.0		158.0		15.0					
Proportion of heavy vehicles, P _{HV}		0.24	0.00	0.00	0.22		0.01		0.17					
Pedestrian Volumes and Adjus	tments													
Movement		13			14			15			16			
Flow, Vp (ped/h)														
Lane width, w (m)														
Walking speed ¹ , S _n (m/s)														
Percent blockage, fp (Eq 17-11)							1							

Worksheet 3											
Lane Designation: Here, Lar	ne 1 is the la	ne close:	st to the o	centerline	e, etc.						
Movements		Lar	ne 1	La	ne 2	Lar	ne 3	Grad	le, G	Chan	nel RT
1, 2, 3		2	2,3					0.	00	1	No
4 , 5, 6		•	4		5			0.	00	1	٧o
7, 8, 9			7		9			0.	00	1	No
10, 11, 12								0.	00	1	No
Flared Minor Street Approact	h										
Movement 9			Yes	Х	No	Storage s	pace, veh	1 ()	_	
Movement 12			Yes		No	Storage s	pace, veh	1 ()		
Median Storage*											
*includes raised median or	striped media	an (RM) o	or two-way	left-turn	lane (TWL	TL)					
					Type						
Movements 7 and 8				Yes	Undivided	х	No	Storage s	pace, veh	1	0
Movements 10 and 11				Yes	Raised Curb		No	Storage s	pace, veh	1	0
Upstream Signals											
	Mvmts	D(m)	Sprog	(km/h)	Cycle (s)	GrnEff (s)	ArrType	SatFlw, s	(veh/hg)	Vprog (veh/h)	Factor f
S ₂	Pro-LT						3				
3 ₂	TH										
S ₅	Pro-LT						3				
S ₅	TH										
Delay to Major Street Vehicle	es: These d	ata are fo	r the sub	ject unsi	gnalized i	ntersectio	on				
						N	lovement	2	N	Novemen	t 5
Shared lane volume, major stre	eet through v	ehicles, v	/ _{i1}								
Shared lane volume, major stre	eet right vehi	icles, v _{i2}									
Saturation flow rate, major stre	et through v	ehicles, s	i1				1800			1800	
Saturation flow rate, major stre	et right vehic	cles, s _{i2}					700			700	
Number of major street through	n lanes						1			1	
Length of study period, T (h)								1.00			

0.11.00.0	ap and Follow-	оро	t = t	+ t _{c HV} P _{HV}	++ G-	t _ t					
	1		or LT	Mino	-,-	Mino	- TII		or LT		
Movement		1	4	9	12	8 NIIIC	11	7	10		
t _{c.base} (Exhi		- 1	4.1	6.2	12	8	- 11	7.1	10		
t _{c.HV}	ibit 17-5)		1.0	1.0				1.0			
	Vorksheet 2)		0.00	0.17				0.01			
t _{c.G}	VOIRGIGGE Z)		0.00	0.17				0.01			
G (from Wo	vrkahoot 2\		0.0	0.1				0.2			
t _{a.l.T}	iksileet 2)		0.0	0.0				0.7			
	single stage					 		0.0			
t _{c,T}	two stage							0.0			
	single stage		4.100	6.367				6.413			
t _c (Eq 17-1)	two stage		1.100	0.007				0.110			
	two stage			t _f = t _{f,base} +	+ D						
				,		/ Minor TH Minor L					
			or LT	Mino							
Movement		1	4	9	12	8	11	7	10		
t _{f,base} (Exhi	DIL 17-5)		2.2	3.3				3.5			
t _{f,HV}	Variation (A)		0.9	0.9				0.9			
t _f (Equation	Vorksheet 2)		0.00	0.17				0.01			
Workshee			2.200	3.450				3.512			
	lear Standing C)	mmutation	4)							
Time to C	lear Standing C	tueue (C	Jiiiputation	1)		Mover	nont 2	Mayor	ment 5		
						V _{T,prog}	$V_{L,prog}$	V _{T,prog}	V _{L,prot}		
Effective g	th (C (e)										
Cycle leng											
Cycle leng Saturation	flow rate, s (vel	n/h)									
Cycle leng Saturation Arrival type	flow rate, s (veh	n/h)					3		3		
Cycle leng Saturation Arrival type v _{prog} (veh/h	flow rate, s (veh	n/h)					3		3		
Cycle leng Saturation Arrival type v _{prog} (veh/h R _p (chapte	flow rate, s (vehen) er 16)	,					3		3		
Cycle leng Saturation Arrival type v _{prog} (veh/r R _p (chapte P, Proporti	flow rate, s (veh e n) er 16) ion of vehicles a	,	green, P (E	quation 17-1	17)		3		3		
Cycle leng Saturation Arrival type v _{prog} (veh/h R _p (chapte	flow rate, s (ver e n) er 16) ion of vehicles a ion 17-18)	,	green, P (E	Equation 17-1	17)		3		3		

Impedance and Capacity Calculations				
Step 1: RT from Minor Street		V ₉		V ₁₂
Conflicting flows (Exhibit 17-4)	v _{c,9} =	484	v _{c,12} =	
Potential capacity (Equation 17-3 or 17-29)	C _{p,9} =	554	$c_{p,12} =$	
Ped impedance factor (Equation 17-12)	$p_{p,9} =$	1.000	$p_{p,12} =$	
Movement capacity (Equation 17-4)	c _{m,9} =	554	c _{m,12} =	
Prob of queue free state (Equation 17-5)	$p_{0,9} =$	0.973	$p_{0,12} =$	1.000
Step 2: LT from Major Street		V ₄		V ₁
Conflicting flows (Exhibit 17-4)	v _{c,4} =	538	v _{c,1} =	
Potential capacity (Equation 17-3 or 17-29)	C _{p.4} =	1040	$c_{p,1} =$	
Ped impedance factor (Equation 17-12)	$p_{p,4} =$	1.000	$p_{p,1} =$	
Movement capacity (Equation 17-4)	c _{m,4} =	1040	c _{m,1} =	
Prob of queue free state (Equation 17-5)	$p_{0,4} =$	0.9865	$p_{0,1} =$	1.0000
Major left shared lane prob of queue free state (Equation 17-16)	$p^*_{0,4} =$		$p^*_{0,1} =$	
Step 3: TH from Minor Street (4-legged intersection only)		V ₈		V ₁₁
Conflicting flows (Exhibit 17-4)	v _{c,8} =		v _{c,11} =	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,8} =$		$c_{p,11} =$	
Ped impedance factor (Equation 17-12)	$p_{p,8} =$		$p_{p,11} =$	
Capacity adjustment factor due to impeding movement (shared lane	f ₈ =	0.987	f ₁₁ =	0.987
use p*) (Equation 17-13)	18 -	0.507	111 -	0.507
Movement capacity (Equation 17-7)	c _{m,8} =		c _{m,11} =	
Prob of queue free state	$p_{0,8} =$	1.0000	$p_{0,11} =$	1.0000
Step 4: LT from Minor Street (4-legged intersection only)		V ₇		V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c,7} =		$v_{c,10} =$	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,7} =$		$c_{p,10} =$	
Ped impedance factor (Equation 17-12)	$p_{p,7} =$	1.000	$p_{p,10} =$	1.000
Major left, minor through impedance factor	p" ₇ =		p" ₁₀ =	
Major left, minor through adjusted impedance factor (Equation 17-8)	p' ₇ =		p' ₁₀ =	
Capacity adjustment factor due to impeding movements (Equation 17-14)	f ₇ =		f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m.7} =		c _{m.10} =	
Step 5: LT from Minor Street (T-intersection only)		V ₇		V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c,7} =	820	v _{c,10} =	
Potential capacity (Equation 17-3 or 17-29)	C _{p,7} =	346	C _{p.10} =	
Ped impedance factor (Equation 17-12)	p _{p,7} =	1.000	$p_{p,10} =$	
Capacity adjustment factor due to impeding movement (shared lane	f ₇ =	0.9865	f -	
use p*) (Equation 17-13)	17 -	0.9005	f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m,7} =	341	c _{m,10} =	
Notes				
 For 4-legged intersection, use steps 1, 2, 3, and 4. 				
2. For T-intersection, use steps 1, 2, and 5				

Worksheet 8						
Shared Lane Capacity						
Movement	v (veh/h)	c _m (veh/h)				c _{SH} (veh/h)
7	158.0	341		Mover	nents 7	341
8	0.0			Mover	nents 9	554
9	15.0	554			_	
10	0.0				$\sum v_y$	
11	0.0			Ccz	. = <u>y</u>	_
12	0.0			311	$\nabla (v_v)$)
Worksheet 9 Effect of Flared Minor-Street App	proach				$\frac{1}{y} \left(c_{m,j} \right)$	
			Mvmt 9		Mvmt	Mvmt 12
c _{sep} (from Worksheet 6 or 7)						
Lane Flow Rate (from Worksheet 2	2)	15			0	
Delay (Equation 17-38)		0.00	0.000		0.0	0.000
Q _{sep} (Equation 17-34)						
0 11						

Q_{sep} + 1 Round (Q_{sep} + 1) n_{max} (Equation 17-35)

Sum of c_{sep} (Equation 17-36a) c_{act} (Equation 17-36)

554

Lane	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exhibit 17-2)	Delay and LOS	
1	7	158	341	0.463	2.5	24.6	С	23.5	
2	9	15	554	0.027	0.1	11.7	В	С	
3									
1									
2									
3									
		1			1	1	1		
Movement v (veh/h)		v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exhibit 17-2)		
	1								
	4	14	1040	0.013	0.0	8.5	P	١	
Workshee									
Delay to R	ank 1 Vehicles								
				S ₂ Appro	ach		S ₅ Approach		
p _{o.j} (Equation			p _{0,1} =			p _{0,4} =			
	for stream 2 or 5								
	for stream 3 or 6								
	on flow rate for stream 2								
	on flow rate for stream 3	or 6							
	tion 17-16)		p* _{0,1} =			p* _{0,4} =			
	lay for stream 1 or 4								
N, number	of major street through la	ines	1			I			

Worksheet 1												
General Information				Site Info	rmation							
Analyst	Ing. F	alconetti		Intersec	tion			Int2 SF	80-SS14			
Agency or Company	Ser	in Srl	=	Jurisdict	ion			Reg	jional			
Date Performed	07-9	jen-20	=	Analysis	Year			2	025			
Analysis Time Period	Sample	Problems	_									
Worksheet 2												
Vehicle Volumes and Adjustm	ent											
					Vehicle '	/olumes	and Adju	stments				
Movement	1	2	3	4	5	6	7	8	9	10	11	12
Volume (veh/h), V		363	99	38	210		159		60			
Peak-hour factor, PHF		1.000	1.000	1.000	1.000		1.000		1.000			
Hourly flow rate, v (veh/hr)		363.0	99.0	38.0	210.0		159.0		60.0			
Proportion of heavy vehicles, P _{HV}		0.21	0.17	0.52	0.19		0.07		0.33			
Pedestrian Volumes and Adjus	tments											
Movement		13			14			15			16	
Flow, Vp (ped/h)												
Lane width, w (m)												
Walking speed ¹ , S _p (m/s)						-		-				-
Percent blockage, fp (Eq 17-11)												

Worksheet 3											
Lane Designation: Here, L	ane 1 is the la										
Movements		Laı	ne 1	Li	ane 2		ane 3	Gra	de, G	Chan	nnel RT
1, 2, 3		2	.,3					0.	00		No
4 , 5, 6			4		5			0.	0.00		No
7, 8, 9			7		9			0.	00		No
10, 11, 12								0.	00		No
Flared Minor Street Approa	ich										
Movement 9			Yes	х	No	Storag	e space, ve	eh	0		
Movement 12			Yes		No	Storag	e space, ve	eh	0		
Median Storage*											
*includes raised median of	or striped medi	an (RM) c	r two-way	left-turn	lane (TWL Type	TL)					
Movements 7 and 8				Yes	Undivided	х	No	Storage s	pace, veh	11	0
Movements 10 and 11				Yes	Raised Curl		No	Storage s	pace, veh	1	0
Upstream Signals											
	Mvmts	D(m)	Sprog	(km/h)	Cycle (s)	GrnEff	(s) ArrType	SatFlw,	(veh/hg)	Vprog (veh/h)	Factor f
	Pro-LT						3				
s ₂	TH										
_	Pro-LT						3				
S ₅	TH										
Delay to Major Street Vehi	cles: These d	ata are fo	r the sub	ject uns	ignalized i	nterse	ction				
							Moveme	nt 2	N	/lovemen	t 5
Shared lane volume, major s	treet through v	ehicles, v	/ _{i1}								
Shared lane volume, major s	treet right veh	icles, v _{i2}									
Saturation flow rate, major st	treet through v	ehicles, s	1				1800			1800	
Saturation flow rate, major st	treet right vehi	cles, s _{i2}					700			700	
Number of major street throu	igh lanes						1			1	
Length of study period, T (h)								1.	00		

Critical C	Sap and Follow	/-Up Time							
			$t_c = t_{c,base}$	+ t _{c,HV} P _{HV}	, + t _{c,G} G -	t _{C,t} - t _{3,LT}			
		Majo	or LT	Mino	or RT	Mine	or TH	Mino	or LT
Movemen		1	4	9	12	8	11	7	10
t _{c,base} (Exh	iibit 17-5)		4.1	6.2				7.1	
t _{c,HV}			1.0	1.0				1.0	
P _{HV} (from \	Norksheet 2)		0.52	0.33				0.07	
$t_{c,G}$				0.1				0.2	
G (from W	orksheet 2)		0.0	0.0				0.0	
t _{3,LT}								0.7	
t _{c.T}	single stage							0.0	
*C, I	two stage								
t _c (Eq 17-1)	single stage		4.624	6.533				6.471	
L _C (⊏q 17-1)	two stage								
				$t_f = t_{f,base} +$	t _{f,HV} P _{HV}			-	
		Majo	or LT	Mino	or RT	Mine	or TH	Mino	or LT
Movemen	t	1	4	9	12	8	11	7	10
t _{f,base} (Exh	ibit 17-5)		2.2	3.3				3.5	
t _{r,HV}			0.9	0.9				0.9	
P _{HV} (from \	Worksheet 2)		0.52	0.33				0.07	
t _f (Equatio	n 17-2)		2.671	3.600				3.564	
Workshe	et 5a								
Time to C	lear Standing	Queue (Co	mputation	1)					
						Move	ment 2	Move	ment 5
						V _{T,prog}	V _{L,prog}	V _{T.prog}	$V_{L,prog}$
Effective of	green, g _{eff} (s)								
Cycle lend	th. C (s)								
Saturation	flow rate, s (ve	eh/h)							
Arrival typ							3		3
v _{prog} (veh/	h)								
R _p (chapte	er 16)								
P, Proport	ion of vehicles	arriving on	green, P (E	quation 17-	17)	1			
	tion 17-18)		- '		-	1			
	tion 17-19)					1			
g _q (Equati	on 17-20)								

Worksheet 4

	V ₉		V ₁₂
$v_{c,9} =$	413	$v_{c,12} =$	
$c_{p,9} =$	577	$c_{p,12} =$	
$p_{p,9} =$	1.000	$p_{p,12} =$	
c _{m,9} =	577	$c_{m,12} =$	
$p_{0,9} =$	0.896	$p_{0,12} =$	1.000
	V ₄		V ₁
v _{c,4} =	462	v _{c,1} =	
$c_{p,4} =$	879	$c_{p,1} =$	
$p_{p,4} =$	1.000	$p_{p,1} =$	
c _{m,4} =	879	c _{m,1} =	
$p_{0,4} =$	0.9568	$p_{0,1} =$	1.000
$p^*_{0,4} =$		$p^*_{0,1} =$	
	V ₈		V ₁₁
v _{c,8} =		v _{c,11} =	
C _{p.8} =		C _{p.11} =	
p _{p,8} =		p _{p,11} =	
-	0.057	£ _	0.05
18 -	0.957	111 -	0.95
c _{m,8} =		c _{m,11} =	
$p_{0,8} =$	1.0000	$p_{0,11} =$	1.000
	V ₇		V ₁₀
v _{c,7} =		v _{c,10} =	
$c_{p,7} =$		$c_{p,10} =$	
$p_{p,7} =$	1.000	$p_{p,10} =$	1.00
p" ₇ =		p" ₁₀ =	
p' ₇ =		p' ₁₀ =	
f ₇ =		f ₁₀ =	
c _{m 7} =		C _{m 10} =	
	V ₇		V ₁₀
V _{c,7} =	622.5	v _{c,10} =	
C _{p,7} =	442	$C_{p,10} =$	
	1.000	$p_{p,10} =$	
$p_{p,7} =$		1	
ρ _{p,7} – f ₇ =	0.9568	f ₁₀ =	
	0.9568 423	f ₁₀ = c _{m.10} =	
f ₇ =			
f ₇ =			
	$\begin{split} c_{p,0} &= \\ c_{p,0} &= \\ c_{p,0} &= \\ c_{p,0} &= \\ v_{c,4} &= \\ c_{p,4} &= \\ c_{p,4} &= \\ c_{p,4} &= \\ c_{p,6} &= \\ c_{p,8} &= \\ c_{p,8} &= \\ c_{m,8} &= \\ c_{m,9} &= \\ c_{m,7} &= \\ c_{p,7} &= \\ c$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Shared Lane Capacity						
Movement	v (veh/h)	c _m (veh/h)				c _{SH} (veh/h)
7	159.0	423		Moven	nents 7	423
8	0.0			Moven	nents 9	577
9	60.0	577			_	
10	0.0				$\sum v_y$	
11	0.0			Con	$= \frac{\sum_{y} v_{y}}{\sum_{y} \left(\frac{v_{y}}{c_{m,y}}\right)}$	
12	0.0			- 311	$\nabla (v_v)$.)
Enect of Flared Million-Street App						
Effect of Flared Minor-Street App	oroach					
			M 4 0		M	M 40
" W I I I I I I I I I I I I I I I I I I			Mvmt 9		Mvmt	Mvmt 12
C _{sep} (from Worksheet 6 or 7)			Mvmt 9			Mvmt 12
Lane Flow Rate (from Worksheet 2		60			0	Mvmt 12
Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38)		60 0.00	0.000			0.000
Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34)					0	
Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1					0	
Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) $Q_{\rm sep}$ (Equation 17-34) $Q_{\rm sep}$ + 1 Round ($Q_{\rm sep}$ + 1)					0	
Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1		0.00			0	
Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35) O _{SH}					0	
Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35)		0.00			0	
Lane Flow Rate (from Worksheet 2 Delay (Equation 17-38) Q _{sep} (Equation 17-34) Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35) O _{SH}		0.00			0	

Workshe								
Control I	Delay, Queue Length, Level o	of Service						
Lane	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exhibit 17-2)	Delay and LOS
1	7	159	423	0.376	1.8	18.6	С	16.8
2	9	60	577	0.104	0.3	12.0	В	С
3								
1								
2								
3								
	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exh	ibit 17-2)
	1							
	4	38	879	0.043	0.1	9.3	,	4
Workshe								
Delay to	Rank 1 Vehicles							
				S ₂ Appro	ach		S ₅ Approach	
$p_{0,j}$ (Equa	ation 17-5)		$p_{0,1} =$			p _{0,4} =		
	ne for stream 2 or 5							
	ne for stream 3 or 6							
s _{i1} , satura	ation flow rate for stream 2 or 5	5						
	ation flow rate for stream 3 or 6	3						
p* _{0,j} , (Εqι	uation 17-16)		p* _{0,1} =			p* _{0,4} =		
	delay for stream 1 or 4	•			•			•
	er of major street through lanes				•			•
d _{rank 1} , de	elay for stream 2 or 5 (Equation	17-39)	1		·			-

0 11.6 "				0.4 1 6								
General Information					rmation							
Analyst	Ing. F	alconetti	_	Intersect	Intersection				Palmanova			
Agency or Company	Sei	rin Srl		Jurisdict	ion			Reg	gional			
Date Performed	07-დ	gen-20	_	Analysis	Analysis Year				025			
Analysis Time Period	Sample	Problems										
Worksheet 2												
Vehicle Volumes and Adjustme	ent											
		Vehicle Volumes and Adjustments										
Movement	1	2	3	4	5	6	7	8	9	10	11	12
Volume (veh/h), V		171	172	9	241		134		10			
Peak-hour factor, PHF		1.000	1.000	1.000	1.000		1.000		1.000			
Hourly flow rate, v (veh/hr)		157.0	146.0	9.0	228.0		109.0		10.0			
Proportion of heavy vehicles, P _{HV}		0.03	0.00	0.00	0.00		0.00		0.00			
Pedestrian Volumes and Adjus	tments											
Movement		13			14			15			16	
Flow, Vp (ped/h)												
Lane width, w (m)												
Walking speed ¹ , S _n (m/s)												
Percent blockage, fp (Eq 17-11)							1					

Worksheet 3											
Lane Designation: Here, Lane	e 1 is the la	ne close:	st to the o	centerline	e, etc.						
Movements		Lar	ne 1	La	ne 2	Lar	1е 3	Grad	le, G	Chan	nel RT
1, 2, 3		2	,3					0.0	00	N	٧o
4 , 5, 6			4		5			0.0	00 No		10
7, 8, 9			7		9			0.0	00	No	
10, 11, 12								0.0	00	N	٧o
Flared Minor Street Approach											
Movement 9			Yes	х	No	Storage s)	_	
Movement 12			Yes		No	Storage s	pace, veh	1 ()		
Median Storage*											
*includes raised median or s	triped media	an (RM) o	r two-way	left-turn	lane (TWL	TL)					
					Type						
Movements 7 and 8				Yes	Undivided	Х	No	Storage s	pace, veh	1	0
Movements 10 and 11				Yes	Raised Curt		No	Storage s	pace, veh	1	0
Upstream Signals											
	Mvmts	D(m)	Sprog	(km/h)	Cycle (s)	GrnEff (s)	ArrType	SatFlw, s	(veh/hg)	Vprog (veh/h)	Factor f
S ₂	Pro-LT						3				
s ₂	TH										
S ₅	Pro-LT						3				
9 5	TH										
Delay to Major Street Vehicle	s: These da	ata are fo	r the sub	ject unsi	gnalized i	ntersection	on				
						N	lovement	2	N	Novement	5
Shared lane volume, major stre	et through v	ehicles, v	'ii								
Shared lane volume, major stre	et right vehi	icles, v _{i2}									
Saturation flow rate, major street			1				1800			1800	
Saturation flow rate, major street	et right vehic	cles, s _{i2}					700			700	
Number of major street through	lanes						1			1	
Length of study period, T (h)								1.0	00		

Critical G	ap and Follow-	Up Time							
				+ t _{c,HV} P _{HV}					
			or LT		r RT		or TH		or LT
Movemen		11	4	9	12	8	11	7	10
t _{c,base} (Exh	ibit 17-5)		4.1	6.2				7.1	
t _{c,HV}			1.0	1.0				1.0	
	Vorksheet 2)		0.00	0.00				0.00	
t _{c,G}				0.1				0.2	
G (from Wo	orksheet 2)		0.0	0.0				0.0	
t _{3,LT}								0.7	
t _{c.T}	single stage		ļ			ļ		0.0	
·u, i	two stage								
t _c (Eq 17-1)	single stage		4.100	6.200				6.400	
,	two stage								
				$t_f = t_{f,base} +$	t _{f,HV} P _{HV}				
		Maj	or LT	Mino	or RT	Mino	or TH	Mine	or LT
Movement	t	1	4	9	12	8	11	7	10
t _{f,base} (Exhi	ibit 17-5)		2.2	3.3				3.5	
t _{f,HV}			0.9	0.9				0.9	
P _{HV} (from V	Vorksheet 2)		0.00	0.00				0.00	
t _f (Equatio	n 17-2)		2.200	3.300				3.500	
Workshee	et 5a								
Time to C	lear Standing C	ueue (C	omputation	1)					
						Move	ment 2	Move	ment 5
						V _{T,prog}	V _{L,prog}	V _{T,prog}	V _{L,prog}
Effective g	reen, g _{eff} (s)								
Cycle leng	th. C (s)								
	flow rate, s (veh	ı/h)							
Arrival typ							3		3
Allıval typ									
						1			
v _{prog} (veh/l R _p (chapte	er 16)								
v _{prog} (veh/l R _p (chapte		rriving or	green, P (E	quation 17-	17)				
v _{prog} (veh/l R _p (chapte P, Proport	er 16) ion of vehicles a ion 17-18)	rriving or	green, P (E	quation 17-	17)				

mpedance and Capacity Calculations				
Step 1: RT from Minor Street		V ₉		V ₁₂
Conflicting flows (Exhibit 17-4)	v _{c,9} =	230	$v_{c,12} =$	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,9} =$	814	$c_{p,12} =$	
Ped impedance factor (Equation 17-12)	$p_{p,9} =$	1.000	$p_{p,12} =$	
Movement capacity (Equation 17-4)	c _{m,9} =	814	c _{m,12} =	
Prob of queue free state (Equation 17-5)	$p_{0,9} =$	0.988	$p_{0,12} =$	1.000
Step 2: LT from Major Street		V ₄		v ₁
	v _{c,4} =	303	$v_{c,1} =$	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,4} =$	1269	$c_{p,1} =$	
	$p_{p,4} =$	1.000	$p_{p,1} =$	
Movement capacity (Equation 17-4)	c _{m,4} =	1269	c _{m,1} =	
Prob of queue free state (Equation 17-5)	$p_{0,4} =$	0.9929	$p_{0,1} =$	1.0000
Major left shared lane prob of queue free state (Equation 17-16)	$p^*_{0,4} =$		$p^{*}_{0,1} =$	
Step 3: TH from Minor Street (4-legged intersection only)		V ₈		V ₁₁
Conflicting flows (Exhibit 17-4)	v _{c,8} =		v _{c,11} =	
Potential capacity (Equation 17-3 or 17-29)	C _{p,8} =		$C_{p,11} =$	
Ped impedance factor (Equation 17-12)	$p_{p,8} =$		$p_{p,11} =$	
Capacity adjustment factor due to impeding movement (shared lane use p*) (Equation 17-13)	f ₈ =	0.993	f ₁₁ =	0.993
Movement capacity (Equation 17-7)	c _{m.8} =		c _{m.11} =	
Prob of queue free state	p _{0.8} =	1.0000	p _{0,11} =	1.000
Step 4: LT from Minor Street (4-legged intersection only)	,.	V ₇		V ₁₀
Conflicting flows (Exhibit 17-4)	V _{c.7} =		v _{c.10} =	
Potential capacity (Equation 17-3 or 17-29)	C _{0.7} =		C _{0.10} =	
Ped impedance factor (Equation 17-12)	p _{p.7} =	1.000	p _{p,10} =	1.000
Major left, minor through impedance factor	p" ₇ =		p" ₁₀ =	
Major left, minor through adjusted impedance factor (Equation 17-8)	p' ₇ =		p' ₁₀ =	
Capacity adjustment factor due to impeding movements (Equation 17-14)	f ₇ =		f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m.7} =		c _{m.10} =	
Step 5: LT from Minor Street (T-intersection only)	-111,7	V ₇	-111,10	V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c.7} =	458	v _{c.10} =	
Potential capacity (Equation 17-3 or 17-29)	C _{p.7} =	565	C _{0.10} =	
	p _{p,7} =	1.000	p _{p,10} =	
Capacity adjustment factor due to impeding movement (shared lane				
use p*) (Equation 17-13)	f ₇ =	0.9929	f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m.7} =	561	c _{m.10} =	
Votes				

Worksheet 8					
Shared Lane Capacity					
Movement	v (veh/h)	c _m (veh/h)			c _{SH} (veh/h)
7	109.0	561		Movements 7	561
8	0.0			Movements 9	814
9	10.0	814		_	
10	0.0			$\sum v_y$	
11	0.0			$c_{SH} = \frac{y}{\sqrt{y}}$	_
12	0.0			$\nabla \left(v_{\nu} \right)$.)
		•		$\sum_{y} \left(\frac{1}{c_{m_s}} \right)$	_)
Worksheet 9					
Effect of Flared Minor-Street App	oroach				
			Mvmt 9	Mvmt	Mvmt 12
c _{sep} (from Worksheet 6 or 7)					
Lane Flow Rate (from Worksheet 2	2)	10	1 1	0	

Delay (Equation 17-38)

Q_{sep} (Equation 17-34)

Sum of c_{sep} (Equation 17-36a) c_{act} (Equation 17-36)

Q_{sep} + 1 Round (Q_{sep} + 1) n_{max} (Equation 17-35) 10 0.00

814

0.000

0.0

0.000

Lane	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exhibit	Delay and
1	7	109	561	0.194	0.7	13.0	В	12.7
2	9	10	814	0.012	0.0	9.5	Α	В
3								
1								
2								
3								
	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exh	ibit 17-2)
	1							
	4	9	1269	0.007	0.0	7.9	A	١
Workshee								
Delay to R	ank 1 Vehicles							
				S ₂ Appro	oach		S ₅ Approach	
p₀j (Equati			$p_{0,1} =$			p _{0,4} =		
	for stream 2 or 5							
	for stream 3 or 6							
	on flow rate for stream 2							
	on flow rate for stream 3	or 6						
p* _{0.j} , (Equa	tion 17-16)		p* _{0,1} =			p* _{0,4} =		
d _{maior left} , de	lay for stream 1 or 4							
N, number	of major street through la							

Go To Inpu

Worksheet 1												
General Information				Site Info	rmation							
Analyst	Ing. Fa	alconetti		Intersect	ion			Int2 SP	80-SS14			
Agency or Company	Ser	in Srl		Jurisdict	ion		_	Reg	ional			
Date Performed	07-g	en-20		Analysis	Year		_	20	25			
Analysis Time Period	Sample	Problems										
Worksheet 2												
Vehicle Volumes and Adjustme	nt											
					Vehicle '	Volumes	and Adjus	tments				
Movement	1	2	3	4	5	6	7	8	9	10	11	12
Volume (veh/h), V		133	82	6	160		122		14			
Peak-hour factor, PHF		1.000	1.000	1.000	1.000		1.000		1.000			
Hourly flow rate, v (veh/hr)		133.0	82.0	6.0	160.0		122.0		14.0			
Proportion of heavy vehicles, P _{HV}		0.03	0.01	0.00	0.02		0.00		0.00			
Pedestrian Volumes and Adjust	ments											
Movement		13			14			15			16	
Flow, Vp (ped/h)												
Lane width, w (m)												
Walking speed ¹ , S _p (m/s)												
Percent blockage, fp (Eq 17-11)												

Worksheet 3											
Lane Designation: Here, L	ane 1 is the la				-						
Movements		Laı	ne 1	Li	ane 2	L	ane 3	Gra	de, G	Chan	nnel RT
1, 2, 3		2	.,3					0.	00	1	No
4 , 5, 6			4		5			0.	00	1	No
7, 8, 9			7		9			0.	00	1	No
10, 11, 12								0.	00	1	No
Flared Minor Street Approa	ıch										
Movement 9			Yes	х	No	Storage	e space, ve	h	0		
Movement 12			Yes		No	Storage	e space, ve	h	0	_	
Median Storage*											
*includes raised median of	or striped medi	an (RM) c	r two-way	left-turn	lane (TWL Type	TL)					
Movements 7 and 8				Yes	Undivided	х	No	Storage s	pace, veh	11	0
Movements 10 and 11				Yes	Raised Curl		No	Storage s	pace, veh	1	0
Upstream Signals											
	Mvmts	D(m)	Sprog	(km/h)	Cycle (s)	GrnEff (s) ArrType	SatFlw,	(veh/hg)	Vprog (veh/h)	Factor f
	Pro-LT						3				
s ₂	TH										
_	Pro-LT						3				
S ₅	TH										
Delay to Major Street Vehi	cles: These d	ata are fo	r the sub	ject uns	ignalized i	ntersec	tion				
							Movemen	t 2	N	/lovemen	t 5
Shared lane volume, major s	treet through v	ehicles, v	/ _{i1}								
Shared lane volume, major s	treet right veh	icles, v _{i2}									
Saturation flow rate, major st	reet through v	ehicles, s	1				1800			1800	
Saturation flow rate, major st	reet right vehi	cles, s _{i2}					700			700	
Number of major street throu	igh lanes						1			1	
Length of study period, T (h)								1.	00		

Critical G	ap and Follow	-Up Time							
			t _c = t _{c,base}	+ t _{c,HV} P _{HV}	+ t _{c,G} G -	t _{C,t} - t _{3,LT}			
		Majo	r LT	Mino	or RT	Mine	or TH	Mino	or LT
Movemen		1	4	9	12	8	11	7	10
t _{c,base} (Exh	ibit 17-5)		4.1	6.2				7.1	
t _{c,HV}			1.0	1.0				1.0	
P _{HV} (from \	Norksheet 2)		0.00	0.00				0.00	
$t_{c,G}$				0.1				0.2	
G (from Wo	orksheet 2)		0.0	0.0				0.0	
t _{3,LT}								0.7	
t _{c.T}	single stage							0.0	
°C,T	two stage								
t, (Eq 17-1)	single stage		4.100	6.200				6.400	
(C (Eq 17-1)	two stage								
				$t_f = t_{f,base} +$	t _{f,HV} P _{HV}	=		·	
		Majo	r LT	Mino	or RT	Mine	or TH	Mino	or LT
Movemen	t	1	4	9	12	8	11	7	10
t _{f,base} (Exh	ibit 17-5)		2.2	3.3				3.5	
t _{r,HV}			0.9	0.9				0.9	
P _{HV} (from \	Norksheet 2)		0.00	0.00				0.00	
t _f (Equatio	n 17-2)		2.200	3.300				3.500	
Workshee									
Time to C	lear Standing (Queue (Co	mputation	1)					
						Move	ment 2	Move	ment 5
						V _{T,prog}	V _{L,prog}	V _{T,prog}	$V_{L,prog}$
Effective of	green, g _{eff} (s)								
Cycle leng	th, C (s)								
Saturation	flow rate, s (ve	h/h)							
Arrival typ	e						3		3
v _{prog} (veh/	h)								
R _p (chapte	er 16)								
P, Proport	ion of vehicles a	arriving on	green, P (E	quation 17-	17)				
	tion 17-18)								
	tion 17-19)								
g _a (Equation	on 17-20)			•	•				

Worksheet 4

mpedance and Capacity Calculations				
Step 1: RT from Minor Street		V ₉		V ₁₂
Conflicting flows (Exhibit 17-4)	v _{c,9} =	174	v _{c,12} =	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,9} =$	875	$c_{p,12} =$	
Ped impedance factor (Equation 17-12)	$p_{p,9} =$	1.000	$p_{p,12} =$	
Movement capacity (Equation 17-4)	c _{m,9} =	875	c _{m,12} =	
Prob of queue free state (Equation 17-5)	$p_{0,9} =$	0.984	$p_{0,12} =$	1.000
Step 2: LT from Major Street		V ₄		v ₁
Conflicting flows (Exhibit 17-4)	v _{c,4} =	215	v _{c,1} =	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,4} =$	1367	$c_{p,1} =$	
Ped impedance factor (Equation 17-12)	$p_{p,4} =$	1.000	$p_{p,1} =$	
Movement capacity (Equation 17-4)	$c_{m,4} =$	1367	c _{m,1} =	
Prob of queue free state (Equation 17-5)	$p_{0,4} =$	0.9956	$p_{0,1} =$	1.0000
Major left shared lane prob of queue free state (Equation 17-16)	$p^*_{0,4} =$		$p^*_{0,1} =$	
Step 3: TH from Minor Street (4-legged intersection only)		V ₈		V ₁₁
Conflicting flows (Exhibit 17-4)	v _{c,8} =		v _{c,11} =	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,8} =$		$c_{p,11} =$	
Ped impedance factor (Equation 17-12)	$p_{p,8} =$		$p_{p,11} =$	
Capacity adjustment factor due to impeding movement (shared lane	f ₈ =	0.996	f ₁₁ =	0.996
use p*) (Equation 17-13)	18 -	0.996	111 =	0.996
Movement capacity (Equation 17-7)	c _{m,8} =		c _{m,11} =	
Prob of queue free state	$p_{0,8} =$	1.0000	$p_{0,11} =$	1.0000
Step 4: LT from Minor Street (4-legged intersection only)		V ₇		V ₁₀
Conflicting flows (Exhibit 17-4)	$v_{c,7} =$		$v_{c,10} =$	
Potential capacity (Equation 17-3 or 17-29)	$c_{p,7} =$		$c_{p,10} =$	
Ped impedance factor (Equation 17-12)	$p_{p,7} =$	1.000	$p_{p,10} =$	1.000
Major left, minor through impedance factor	p" ₇ =		p" ₁₀ =	
Major left, minor through adjusted impedance factor (Equation 17-8)	p' ₇ =		p' ₁₀ =	
Capacity adjustment factor due to impeding movements (Equation 17-14)	f ₇ =		f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m 7} =		C _{m 10} =	
Step 5: LT from Minor Street (T-intersection only)		V ₇		V ₁₀
Conflicting flows (Exhibit 17-4)	v _{c,7} =	334	v _{c,10} =	
Potential capacity (Equation 17-3 or 17-29)	C _{p.7} =	665	$c_{p,10} =$	
Ped impedance factor (Equation 17-12)	p _{p.7} =	1.000	p _{p,10} =	
Capacity adjustment factor due to impeding movement (shared lane use p*) (Equation 17-13)	f ₇ =	0.9956	f ₁₀ =	
Movement capacity (Equation 17-10)	c _{m.7} =	662	c _{m.10} =	
Notes				

Worksheet 8						
Shared Lane Capacity						
Movement	v (veh/h)	c _m (veh/h)				c _{SH} (veh/h)
7	122.0	662		Mover	ments 7	662
8	0.0			Mover	nents 9	875
9	14.0	875			_	
10	0.0				$\sum v_{y}$	
11	0.0			Cer	$v_{y} = \frac{\sum_{y} v_{y}}{\sum_{y} \left(\frac{v_{y}}{c_{m}}\right)}$	_
12	0.0			- 311	(v.	.)
•	Joacii		Mvmt 9		Mvmt	Mvmt 12
Effect of Flared Minor-Street App	proach					
c _{sep} (from Worksheet 6 or 7)			WWIIIL 3		WIVIII	WIVIIIL 12
Lane Flow Rate (from Worksheet 2	2)	14	-		0	
Delay (Equation 17-38)	2)	0.00	0.000		0.0	0.000
Delay (Equation 17-38)						0.000
O (Equation 17.24)		0.00	0.000			
		0.00	0.000			
Q _{sep} (Equation 17-34) Q _{sep} + 1		0.00	0.000			
Q _{sep} + 1 Round (Q _{sep} + 1)		0.00	0.000			
Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35)			0.000			
Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35) c _{SH}		875	0.000			
Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35) C _{SH} Sum of C _{sep} (Equation 17-36a)			0.000			
Q _{sep} + 1 Round (Q _{sep} + 1) n _{max} (Equation 17-35) c _{SH}			0.000			

Lane	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exhibit 17-2)	Delay and LOS
1	7	122	662	0.184	0.7	11.7	В	11.4
2	9	14	875	0.016	0.0	9.2	Α	В
3								
1								
2								
3								
							•	
	Movement	v (veh/h)	cm (veh/h)	v/c	Queue Length (Eq 17-37)	Control Delay (Equ 17-38)	LOS (Exh	ibit 17-2)
	1							
	4	6	1367	0.004	0.0	7.6	P	
Worksheet								
Delay to Ra	ank 1 Vehicles							
				S ₂ Appro	ach		S ₅ Approach	
o _{o.j} (Equatio			p _{0,1} =			p _{0,4} =		
	for stream 2 or 5							
	for stream 3 or 6							
	on flow rate for stream 2 c							
	on flow rate for stream 3 or	or 6						
o* _{0,j} , (Equat			p* _{0,1} =			p* _{0,4} =		
	ay for stream 1 or 4							
	of major street through lar							
ا مامام	for stream 2 or 5 (Equati							